113 research outputs found

    Vehicle re-routing strategies for congestion avoidance

    Get PDF
    Traffic congestion causes driver frustration and costs billions of dollars annually in lost time and fuel consumption. This dissertation introduces a cost-effective and easily deployable vehicular re-routing system that reduces the effects of traffic congestion. The system collects real-time traffic data from vehicles and road-side sensors, and computes proactive, individually tailored re-routing guidance, which is pushed to vehicles when signs of congestion are observed on their routes. Subsequently, this dissertation proposes and evaluates two classes of re-routing strategies designed to be incorporated into this system, namely, Single Shortest Path strategies and Multiple Shortest Paths Strategies. These strategies are firstly implemented in a centralized system, where a server receives traffic updates from cars, computes alternative routes, and pushes them as guidance to drivers. The extensive experimental results show that the proposed strategies are capable of reducing the travel time comparable to a state-of-the-art Dynamic Traffic Assignment (DTA) algorithm, while avoiding the issues that make DTA impractical, such as lack of scalability and robustness, and high computation time. Furthermore, the variety of proposed strategies allows the system to be tuned to different levels of trade-off between re-routing effectiveness and computational efficiency. Also, the proposed traffic guidance system is robust even if many drivers ignore the guidance, or if the system adoption rate is relatively low. The centralized system suffers from two intrinsic problems: the central server has to perform intensive computation and communication with the vehicles in real-time, which can make such solutions infeasible for large regions with many vehicles; and driver privacy is not protected since the drivers have to share their location as well as the origins and destinations of their trips with the server, which may prevent the adoption of such solutions. To address these problems, a hybrid vehicular re-routing system is presented in this dissertation. The system off-loads a large part of the re-routing computation at the vehicles, and thus, the re-routing process becomes practical in real-time. To make collaborative re-routing decisions, the vehicles exchange messages over vehicular ad hoc networks. The system is hybrid because it still uses a server to determine an accurate global view of the traffic. In addition, the user privacy is balanced with the re-routing effectiveness. The simulation results demonstrate that, compared with a centralized system, the proposed hybrid system increases the user privacy substantially, while the re-routing effectiveness is minimally impacted

    Design of Time-Sensitive Networks For Safety-Critical Cyber-Physical Systems

    Get PDF
    A new era of Cyber-Physical Systems (CPSs) is emerging due to the vast growth in computation and communication technologies. A fault-tolerant and timely communication is the backbone of any CPS to interconnect the distributed controllers to the physical processes. Such reliability and timing requirements become more stringent in safety-critical applications, such as avionics and automotive. Future networks have to meet increasing bandwidth and coverage demands without compromising their reliability and timing. Ethernet technology is efficient in providing a low-cost scalable networking solution. However, the non-deterministic queuing delay and the packet collisions deny low latency communication in Ethernet. In this context, IEEE 802.1 Time Sensitive Network (TSN) standard has been introduced as an extension of the Ethernet technology to realize switched network architecture with real-time capabilities. TSN offers Time-Triggered (TT) traffic deterministic communication. Bounded Worst-Case end-to-end Delay (WCD) delivery is yielded by Audio Video Bridging (AVB) traffic. In this thesis, we are interested in the TSN design and verification. TSN design and verification are challenging tasks, especially for realistic safety-critical applications. The increasing complexity of CPSs widens the gap between the underlying networks' scale and the design techniques' capabilities. The existing TSN's scheduling techniques, which are limited to small and medium networks, are good examples of such a gap. On the other hand, the TSN has to handle dynamic traffic in some applications, e.g., Fog computing applications. Other challenges are related to satisfying the fault-tolerance constraints of mixed-criticality traffic in resource-efficient manners. Furthermore, in space and avionics applications, the harsh radiation environment implies verifying the TSN's availability under Single Event Upset (SEU)-induced failures. In other words, TSN design has to manage a large variety of constraints regarding the cost, redundancy, and delivery latency where no single design approach fits all applications. Therefore, TSN's efficient employment demands a flexible design framework that offers several design approaches to meet the broad range of timing, reliability, and cost constraints. This thesis aims to develop a TSN design framework that enables TSN deployment in a broad spectrum of CPSs. The framework introduces a set of methods to address the reliability, timing, and scalability aspects. Topology synthesis, traffic planning, and early-stage modeling and analysis are considered in this framework. The proposed methods work together to meet a large variety of constraints in CPSs. This thesis proposes a scalable heuristic-based method for topology synthesis and ILP formulations for reliability-aware AVB traffic routing to address the fault-tolerance transmission. A novel method for scalable scheduling of TT traffic to attain real-time transmission. To optimize the TSN for dynamic traffic, we propose a new priority assignment technique based on reinforcement learning. Regarding the TSN verification in harsh radiation environments, we introduce formal models to investigate the impact of the SEU-induced switches failures on the TSN availability. The proposed analysis adopts the model checking and statistical model checking techniques to discover and characterize the vulnerable design candidates

    Joint University Program for Air Transportation Research, 1991-1992

    Get PDF
    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Robotix-Academy Conference for Industrial Robotics (RACIR) 2019

    Get PDF
    Robotix-Academy Conference for Industrial Robotics (RACIR) is held in University of Liège, Belgium, during June 05, 2019. The topics concerned by RACIR are: robot design, robot kinematics/dynamics/control, system integration, sensor/ actuator networks, distributed and cloud robotics, bio-inspired systems, service robots, robotics in automation, biomedical applications, autonomous vehicles (land, sea and air), robot perception, manipulation with multi-finger hands, micro/nano systems, sensor information, robot vision, multimodal interface and human-robot interaction.

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Statistical Physics of Design

    Full text link
    Modern life increasingly relies on complex products that perform a variety of functions. The key difficulty of creating such products lies not in the manufacturing process, but in the design process. However, design problems are typically driven by multiple contradictory objectives and different stakeholders, have no obvious stopping criteria, and frequently prevent construction of prototypes or experiments. Such ill-defined, or "wicked" problems cannot be "solved" in the traditional sense with optimization methods. Instead, modern design techniques are focused on generating knowledge about the alternative solutions in the design space. In order to facilitate such knowledge generation, in this dissertation I develop the "Systems Physics" framework that treats the emergent structures within the design space as physical objects that interact via quantifiable forces. Mathematically, Systems Physics is based on maximal entropy statistical mechanics, which allows both drawing conceptual analogies between design problems and collective phenomena and performing numerical calculations to gain quantitative understanding. Systems Physics operates via a Model-Compute-Learn loop, with each step refining our thinking of design problems. I demonstrate the capabilities of Systems Physics in two very distinct case studies: Naval Engineering and self-assembly. For the Naval Engineering case, I focus on an established problem of arranging shipboard systems within the available hull space. I demonstrate the essential trade-off between minimizing the routing cost and maximizing the design flexibility, which can lead to abrupt phase transitions. I show how the design space can break into several locally optimal architecture classes that have very different robustness to external couplings. I illustrate how the topology of the shipboard functional network enters a tight interplay with the spatial constraints on placement. For the self-assembly problem, I show that the topology of self-assembled structures can be reliably encoded in the properties of the building blocks so that the structure and the blocks can be jointly designed. The work presented here provides both conceptual and quantitative advancements. In order to properly port the language and the formalism of statistical mechanics to the design domain, I critically re-examine such foundational ideas as system-bath coupling, coarse graining, particle distinguishability, and direct and emergent interactions. I show that the design space can be packed into a special information structure, a tensor network, which allows seamless transition from graphical visualization to sophisticated numerical calculations. This dissertation provides the first quantitative treatment of the design problem that is not reduced to the narrow goals of mathematical optimization. Using statistical mechanics perspective allows me to move beyond the dichotomy of "forward" and "inverse" design and frame design as a knowledge generation process instead. Such framing opens the way to further studies of the design space structures and the time- and path-dependent phenomena in design. The present work also benefits from, and contributes to the philosophical interpretations of statistical mechanics developed by the soft matter community in the past 20 years. The discussion goes far beyond physics and engages with literature from materials science, naval engineering, optimization problems, design theory, network theory, and economic complexity.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163133/1/aklishin_1.pd

    Design and Simulation of RFID-Enabled Aircraft Reverse Logistics Network via Agent-Based Modeling

    Get PDF
    Reverse Logistics (RL) has become increasingly popular in different industries especially aerospace industry over the past decade due to the fact that RL can be a profitable and sustainable business strategy for many organizations. However, executing and fulfilling an efficient recovery network needs constructing appropriate logistics system for flows of new, used, and recovered products. On the other hand, successful RL network requires a reliable monitoring and control system. A key factor for the success and effectiveness of RL system is to conduct real-time monitoring system such as radio frequency identification (RFID) technology. The RFID system can evaluate and analyze RL performance timely so that in the case of deviation in any areas of RL, the appropriate corrective actions can be taken in a quick manner. An automated data capturing system like RFID and computer simulation techniques such as agent-based (AB), system dynamic (SD) and discrete event (DE) provide a reliable platform for effective RL tracking and control, as they can respectively decrease the time needed to obtain data and simulate various scenarios for suitable best corrective actions. The functionality of the RL system can be noticeably elevated by integrating these two systems and techniques. Besides, each computer simulation approach has its own benefits for understanding the RL network from different aspects. Therefore, in this study, after designing and constructing the RL system through the real case study from Bell Helicopter Company with the aid of unified modeling language (UML), three simulation techniques were proposed for the model. Afterwards the results of all three simulation approaches (AB, SD and DE) were compared with considering two scenarios of RL RFID-enabled and RL without RFID. The computer simulation models were developed using “AnyLogic 7.1” software. The results of the research present that with exploiting RFID technology, the total disassembly time of a single helicopter was decreased. The comparison of all three simulation methods was performed as well. Keywords: Reverse logistics (RL), RFID, aerospace industry, agent-based simulation, system dynamic simulation, discrete event simulation, AnyLogi
    • …
    corecore