58 research outputs found

    Filaments of crime: Informing policing via thresholded ridge estimation

    Full text link
    Objectives: We introduce a new method for reducing crime in hot spots and across cities through ridge estimation. In doing so, our goal is to explore the application of density ridges to hot spots and patrol optimization, and to contribute to the policing literature in police patrolling and crime reduction strategies. Methods: We make use of the subspace-constrained mean shift algorithm, a recently introduced approach for ridge estimation further developed in cosmology, which we modify and extend for geospatial datasets and hot spot analysis. Our experiments extract density ridges of Part I crime incidents from the City of Chicago during the year 2018 and early 2019 to demonstrate the application to current data. Results: Our results demonstrate nonlinear mode-following ridges in agreement with broader kernel density estimates. Using early 2019 incidents with predictive ridges extracted from 2018 data, we create multi-run confidence intervals and show that our patrol templates cover around 94% of incidents for 0.1-mile envelopes around ridges, quickly rising to near-complete coverage. We also develop and provide researchers, as well as practitioners, with a user-friendly and open-source software for fast geospatial density ridge estimation. Conclusions: We show that ridges following crime report densities can be used to enhance patrolling capabilities. Our empirical tests show the stability of ridges based on past data, offering an accessible way of identifying routes within hot spots instead of patrolling epicenters. We suggest further research into the application and efficacy of density ridges for patrolling.Comment: 17 pages, 3 figure

    Visual Analytics Methods for Exploring Geographically Networked Phenomena

    Get PDF
    abstract: The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work has been done analyzing the dynamics of spatial networks; however, many challenges still remain in this field. First, the development of social media and transportation technologies has greatly reshaped the typologies of communications between different geographical regions. Second, the distance metrics used in spatial analysis should also be enriched with the underlying network information to develop accurate models. Visual analytics provides methods for data exploration, pattern recognition, and knowledge discovery. However, despite the long history of geovisualizations and network visual analytics, little work has been done to develop visual analytics tools that focus specifically on geographically networked phenomena. This thesis develops a variety of visualization methods to present data values and geospatial network relationships, which enables users to interactively explore the data. Users can investigate the connections in both virtual networks and geospatial networks and the underlying geographical context can be used to improve knowledge discovery. The focus of this thesis is on social media analysis and geographical hotspots optimization. A framework is proposed for social network analysis to unveil the links between social media interactions and their underlying networked geospatial phenomena. This will be combined with a novel hotspot approach to improve hotspot identification and boundary detection with the networks extracted from urban infrastructure. Several real world problems have been analyzed using the proposed visual analytics frameworks. The primary studies and experiments show that visual analytics methods can help analysts explore such data from multiple perspectives and help the knowledge discovery process.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Prescriptive Analytics in Urban Policing Operations

    Get PDF
    Problem definition: We consider the case of prescriptive policing, that is, the data-driven assignment of police cars to different areas of a city. We analyze key problems with respect to prediction, optimization, and evaluation as well as trade-offs between different quality measures and crime types. Academic/practical relevance: Data-driven prescriptive analytics is gaining substantial attention in operations management research, and effective policing is at the core of the operations of almost every city in the world. Given the vast amounts of data increasingly collected within smart city initiatives and the growing safety challenges faced by urban centers worldwide, our work provides novel insights on the development and evaluation of prescriptive analytics applications in an urban context. Methodology: We conduct a computational study using crime and auxiliary data on the city of San Francisco. We analyze both strong and weak prediction methods along with two optimization formulations representing the deterrence and response time impact of police vehicle allocations. We analyze trade-offs between these effects and between different crime types. Results: We find that even weaker prediction methods can produce Pareto-efficient outcomes with respect to deterrence and response time. We identify three different archetypes of combinations of prediction methods and optimization objectives that constitute the Pareto frontier among the configurations we analyze. Furthermore, optimizing for multiple crime types biases allocations in a way that generally decreases single-type performance along one outcome metric but can improve it along the other. Managerial implications: Although optimization integrating all relevant crime types is theoretically possible, it is practically challenging because each crime type requires a collectively consistent weight. We present a framework combining prediction and optimization for a subset of key crime types with exploring the impact on the remaining types to support implementation of operations-focused smart city solutions in practice

    Detecting and Monitoring Hate Speech in Twitter

    Get PDF
    Social Media are sensors in the real world that can be used to measure the pulse of societies. However, the massive and unfiltered feed of messages posted in social media is a phenomenon that nowadays raises social alarms, especially when these messages contain hate speech targeted to a specific individual or group. In this context, governments and non-governmental organizations (NGOs) are concerned about the possible negative impact that these messages can have on individuals or on the society. In this paper, we present HaterNet, an intelligent system currently being used by the Spanish National Office Against Hate Crimes of the Spanish State Secretariat for Security that identifies and monitors the evolution of hate speech in Twitter. The contributions of this research are many-fold: (1) It introduces the first intelligent system that monitors and visualizes, using social network analysis techniques, hate speech in Social Media. (2) It introduces a novel public dataset on hate speech in Spanish consisting of 6000 expert-labeled tweets. (3) It compares several classification approaches based on different document representation strategies and text classification models. (4) The best approach consists of a combination of a LTSM+MLP neural network that takes as input the tweet’s word, emoji, and expression tokens’ embeddings enriched by the tf-idf, and obtains an area under the curve (AUC) of 0.828 on our dataset, outperforming previous methods presented in the literatureThe work by Quijano-Sanchez was supported by the Spanish Ministry of Science and Innovation grant FJCI-2016-28855. The research of Liberatore was supported by the Government of Spain, grant MTM2015-65803-R, and by the European Union’s Horizon 2020 Research and Innovation Programme, under the Marie Sklodowska-Curie grant agreement No. 691161 (GEOSAFE). All the financial support is gratefully acknowledge

    Spatio-temporal crime HotSpot detection and prediction: a systematic literature review

    Get PDF
    The primary objective of this study is to accumulate, summarize, and evaluate the state-of-the-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author's knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatio-temporal crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications

    Real Time Crime Prediction Using Social Media

    Get PDF
    There is no doubt that crime is on the increase and has a detrimental influence on a nation's economy despite several attempts of studies on crime prediction to minimise crime rates. Historically, data mining techniques for crime prediction models often rely on historical information and its mostly country specific. In fact, only a few of the earlier studies on crime prediction follow standard data mining procedure. Hence, considering the current worldwide crime trend in which criminals routinely publish their criminal intent on social media and ask others to see and/or engage in different crimes, an alternative, and more dynamic strategy is needed. The goal of this research is to improve the performance of crime prediction models. Thus, this thesis explores the potential of using information on social media (Twitter) for crime prediction in combination with historical crime data. It also figures out, using data mining techniques, the most relevant feature engineering needed for United Kingdom dataset which could improve crime prediction model performance. Additionally, this study presents a function that could be used by every state in the United Kingdom for data cleansing, pre-processing and feature engineering. A shinny App was also use to display the tweets sentiment trends to prevent crime in near-real time.Exploratory analysis is essential for revealing the necessary data pre-processing and feature engineering needed prior to feeding the data into the machine learning model for efficient result. Based on earlier documented studies available, this is the first research to do a full exploratory analysis of historical British crime statistics using stop and search historical dataset. Also, based on the findings from the exploratory study, an algorithm was created to clean the data, and prepare it for further analysis and model creation. This is an enormous success because it provides a perfect dataset for future research, particularly for non-experts to utilise in constructing models to forecast crime or conducting investigations in around 32 police districts of the United Kingdom.Moreover, this study is the first study to present a complete collection of geo-spatial parameters for training a crime prediction model by combining demographic data from the same source in the United Kingdom with hourly sentiment polarity that was not restricted to Twitter keyword search. Six unique base models that were frequently mentioned in the previous literature was selected and used to train stop-and-search historical crime dataset and evaluated on test data and finally validated with dataset from London and Kent crime datasets.Two different datasets were created from twitter and historical data (historical crime data with twitter sentiment score and historical data without twitter sentiment score). Six of the most prevalent machine learning classifiers (Random Forest, Decision Tree, K-nearest model, support vector machine, neural network and naïve bayes) were trained and tested on these datasets. Additionally, hyperparameters of each of the six models developed were tweaked using random grid search. Voting classifiers and logistic regression stacked ensemble of different models were also trained and tested on the same datasets to enhance the individual model performance.In addition, two combinations of stack ensembles of multiple models were constructed to enhance and choose the most suitable models for crime prediction, and based on their performance, the appropriate prediction model for the UK dataset would be selected. In terms of how the research may be interpreted, it differs from most earlier studies that employed Twitter data in that several methodologies were used to show how each attribute contributed to the construction of the model, and the findings were discussed and interpreted in the context of the study. Further, a shiny app visualisation tool was designed to display the tweets’ sentiment score, the text, the users’ screen name, and the tweets’ vicinity which allows the investigation of any criminal actions in near-real time. The evaluation of the models revealed that Random Forest, Decision Tree, and K nearest neighbour outperformed other models. However, decision trees and Random Forests perform better consistently when evaluated on test data

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested
    • …
    corecore