7 research outputs found

    KASR: A Reliable and Practical Approach to Attack Surface Reduction of Commodity OS Kernels

    Full text link
    Commodity OS kernels have broad attack surfaces due to the large code base and the numerous features such as device drivers. For a real-world use case (e.g., an Apache Server), many kernel services are unused and only a small amount of kernel code is used. Within the used code, a certain part is invoked only at runtime while the rest are executed at startup and/or shutdown phases in the kernel's lifetime run. In this paper, we propose a reliable and practical system, named KASR, which transparently reduces attack surfaces of commodity OS kernels at runtime without requiring their source code. The KASR system, residing in a trusted hypervisor, achieves the attack surface reduction through a two-step approach: (1) reliably depriving unused code of executable permissions, and (2) transparently segmenting used code and selectively activating them. We implement a prototype of KASR on Xen-4.8.2 hypervisor and evaluate its security effectiveness on Linux kernel-4.4.0-87-generic. Our evaluation shows that KASR reduces the kernel attack surface by 64% and trims off 40% of CVE vulnerabilities. Besides, KASR successfully detects and blocks all 6 real-world kernel rootkits. We measure its performance overhead with three benchmark tools (i.e., SPECINT, httperf and bonnie++). The experimental results indicate that KASR imposes less than 1% performance overhead (compared to an unmodified Xen hypervisor) on all the benchmarks.Comment: The work has been accepted at the 21st International Symposium on Research in Attacks, Intrusions, and Defenses 201

    Automated tailoring of system software stacks

    Get PDF
    In many industrial sectors, device manufacturers are moving away from expensive special-purpose hardware units and consolidate their systems on commodity hardware. As part of this change, developers are enabled to run their applications on general-purpose operating systems like Linux, which already supports thousands of different devices out of the box and can be used in a wide range of target scenarios. Furthermore, the Linux ecosystem allows them to integrate existing implementations of standard functionality in the form of shared libraries. However, as the libraries and the Linux kernel are designed as generic building blocks in order to support as many applications as possible, they cannot make assumptions about specific use cases for a single-purpose device. This generality leads to unnecessary overheads in narrowly defined target scenarios, as unneeded components do not only take up space on the target system but have to be maintained over the lifetime of the device as well. While the Linux kernel provides a configuration system to disable unneeded functionality like device drivers, determining the required features from over 16000 options is an infeasible task. Even worse, most shared libraries cannot be customized even though only around 10 percent of their functions are ever used by applications. In this thesis, I present my approaches for the automated identification and removal of unnecessary components in all layers of the software stack. As the configuration system is an integral part of the Linux kernel, we embrace its presence and automatically generate custom-fitted configurations for observed target scenarios with the help of an extracted variability model. For the much more diverse realm of shared libraries, with different programming languages, build systems, and a lack of configurability, I demonstrate a different approach. By identifying individual functions as logically distinct units, we construct a symbol-level dependency graph across the applications and all their required libraries. We then remove unneeded code at the binary level and rearrange the remaining parts to take up minimal space in the binary file by formulating their placement as an optimization problem. To lower the number of unnecessary updates to unused components in a deployed system, I lastly present an automated method to determine the impact of software changes on a target scenario and provide guidance for developers on whether they need to update their systems. Applying these techniques to different target systems, I demonstrate that we can disable up to 87 percent of configuration options in a Debian Linux kernel, shrink the size of an embedded OpenWrt kernel by 59 percent, and speed up the boot process of the embedded system by 21 percent. As part of the shared library tailoring process, we can remove 13060 functions from all libraries in OpenWrt and reduce their total size by 31 percent. In the memcached Docker container, we identify 381 entirely unneeded shared libraries and shrink the container image size by 82 percent. An analysis of the development history of two large library projects over the course of more than two years further shows that between 68 and 82 percent of all changes are not required for an OpenWrt appliance, reducing the number of patch days by up to 69 percent. These results demonstrate the broad applicability of our automated methods for both the Linux kernel and shared libraries to a wide range of scenarios. From embedded systems to server applications, custom-tailored system software stacks contribute to the reduction of overheads in space and time

    Secure and safe virtualization-based framework for embedded systems development

    Get PDF
    Tese de Doutoramento - Programa Doutoral em Engenharia Electrónica e de Computadores (PDEEC)The Internet of Things (IoT) is here. Billions of smart, connected devices are proliferating at rapid pace in our key infrastructures, generating, processing and exchanging vast amounts of security-critical and privacy-sensitive data. This strong connectivity of IoT environments demands for a holistic, end-to-end security approach, addressing security and privacy risks across different abstraction levels: device, communications, cloud, and lifecycle managment. Security at the device level is being misconstrued as the addition of features in a late stage of the system development. Several software-based approaches such as microkernels, and virtualization have been used, but it is proven, per se, they fail in providing the desired security level. As a step towards the correct operation of these devices, it is imperative to extend them with new security-oriented technologies which guarantee security from the outset. This thesis aims to conceive and design a novel security and safety architecture for virtualized systems by 1) evaluating which technologies are key enablers for scalable and secure virtualization, 2) designing and implementing a fully-featured virtualization environment providing hardware isolation 3) investigating which "hard entities" can extend virtualization to guarantee the security requirements dictated by confidentiality, integrity, and availability, and 4) simplifying system configurability and integration through a design ecosystem supported by a domain-specific language. The developed artefacts demonstrate: 1) why ARM TrustZone is nowadays a reference technology for security, 2) how TrustZone can be adequately exploited for virtualization in different use-cases, 3) why the secure boot process, trusted execution environment and other hardware trust anchors are essential to establish and guarantee a complete root and chain of trust, and 4) how a domain-specific language enables easy design, integration and customization of a secure virtualized system assisted by the above mentioned building blocks.Vivemos na era da Internet das Coisas (IoT). Biliões de dispositivos inteligentes começam a proliferar nas nossas infraestruturas chave, levando ao processamento de avolumadas quantidades de dados privados e sensíveis. Esta forte conectividade inerente ao conceito IoT necessita de uma abordagem holística, em que os riscos de privacidade e segurança são abordados nas diferentes camadas de abstração: dispositivo, comunicações, nuvem e ciclo de vida. A segurança ao nível dos dispositivos tem sido erradamente assegurada pela inclusão de funcionalidades numa fase tardia do desenvolvimento. Têm sido utilizadas diversas abordagens de software, incluindo a virtualização, mas está provado que estas não conseguem garantir o nível de segurança desejado. De forma a garantir a correta operação dos dispositivos, é fundamental complementar os mesmos com novas tecnologias que promovem a segurança desde os primeiros estágios de desenvolvimento. Esta tese propõe, assim, o desenvolvimento de uma solução arquitetural inovadora para sistemas virtualizados seguros, contemplando 1) a avaliação de tecnologias chave que promovam tal realização, 2) a implementação de uma solução de virtualização garantindo isolamento por hardware, 3) a identificação de componentes que integrados permitirão complementar a virtualização para garantir os requisitos de segurança, e 4) a simplificação do processo de configuração e integração da solução através de um ecossistema suportado por uma linguagem de domínio específico. Os artefactos desenvolvidos demonstram: 1) o porquê da tecnologia ARM TrustZone ser uma tecnologia de referência para a segurança, 2) a efetividade desta tecnologia quando utilizada em diferentes domínios, 3) o porquê do processo seguro de inicialização, juntamente com um ambiente de execução seguro e outros componentes de hardware, serem essenciais para estabelecer uma cadeia de confiança, e 4) a viabilidade em utilizar uma linguagem de um domínio específico para configurar e integrar um ambiente virtualizado suportado pelos artefactos supramencionados

    Flexible Hardware-based Security-aware Mechanisms and Architectures

    Get PDF
    For decades, software security has been the primary focus in securing our computing platforms. Hardware was always assumed trusted, and inherently served as the foundation, and thus the root of trust, of our systems. This has been further leveraged in developing hardware-based dedicated security extensions and architectures to protect software from attacks exploiting software vulnerabilities such as memory corruption. However, the recent outbreak of microarchitectural attacks has shaken these long-established trust assumptions in hardware entirely, thereby threatening the security of all of our computing platforms and bringing hardware and microarchitectural security under scrutiny. These attacks have undeniably revealed the grave consequences of hardware/microarchitecture security flaws to the entire platform security, and how they can even subvert the security guarantees promised by dedicated security architectures. Furthermore, they shed light on the sophisticated challenges particular to hardware/microarchitectural security; it is more critical (and more challenging) to extensively analyze the hardware for security flaws prior to production, since hardware, unlike software, cannot be patched/updated once fabricated. Hardware cannot reliably serve as the root of trust anymore, unless we develop and adopt new design paradigms where security is proactively addressed and scrutinized across the full stack of our computing platforms, at all hardware design and implementation layers. Furthermore, novel flexible security-aware design mechanisms are required to be incorporated in processor microarchitecture and hardware-assisted security architectures, that can practically address the inherent conflict between performance and security by allowing that the trade-off is configured to adapt to the desired requirements. In this thesis, we investigate the prospects and implications at the intersection of hardware and security that emerge across the full stack of our computing platforms and System-on-Chips (SoCs). On one front, we investigate how we can leverage hardware and its advantages, in contrast to software, to build more efficient and effective security extensions that serve security architectures, e.g., by providing execution attestation and enforcement, to protect the software from attacks exploiting software vulnerabilities. We further propose that they are microarchitecturally configured at runtime to provide different types of security services, thus adapting flexibly to different deployment requirements. On another front, we investigate how we can protect these hardware-assisted security architectures and extensions themselves from microarchitectural and software attacks that exploit design flaws that originate in the hardware, e.g., insecure resource sharing in SoCs. More particularly, we focus in this thesis on cache-based side-channel attacks, where we propose sophisticated cache designs, that fundamentally mitigate these attacks, while still preserving performance by enabling that the performance security trade-off is configured by design. We also investigate how these can be incorporated into flexible and customizable security architectures, thus complementing them to further support a wide spectrum of emerging applications with different performance/security requirements. Lastly, we inspect our computing platforms further beneath the design layer, by scrutinizing how the actual implementation of these mechanisms is yet another potential attack surface. We explore how the security of hardware designs and implementations is currently analyzed prior to fabrication, while shedding light on how state-of-the-art hardware security analysis techniques are fundamentally limited, and the potential for improved and scalable approaches

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    Quality of Service in Distributed Stream Processing for large scale Smart Pervasive Environments

    Get PDF
    The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    corecore