1,209 research outputs found

    A vision system for mobile maritime surveillance platforms

    Get PDF
    Mobile surveillance systems play an important role to minimise security and safety threats in high-risk or hazardous environments. Providing a mobile marine surveillance platform with situational awareness of its environment is important for mission success. An essential part of situational awareness is the ability to detect and subsequently track potential target objects.Typically, the exact type of target objects is unknown, hence detection is addressed as a problem of finding parts of an image that stand out in relation to their surrounding regions or are atypical to the domain. Contrary to existing saliency methods, this thesis proposes the use of a domain specific visual attention approach for detecting potential regions of interest in maritime imagery. For this, low-level features that are indicative of maritime targets are identified. These features are then evaluated with respect to their local, regional, and global significance. Together with a domain specific background segmentation technique, the features are combined in a Bayesian classifier to direct visual attention to potential target objects.The maritime environment introduces challenges to the camera system: gusts, wind, swell, or waves can cause the platform to move drastically and unpredictably. Pan-tilt-zoom cameras that are often utilised for surveillance tasks can adjusting their orientation to provide a stable view onto the target. However, in rough maritime environments this requires high-speed and precise inputs. In contrast, omnidirectional cameras provide a full spherical view, which allows the acquisition and tracking of multiple targets at the same time. However, the target itself only occupies a small fraction of the overall view. This thesis proposes a novel, target-centric approach for image stabilisation. A virtual camera is extracted from the omnidirectional view for each target and is adjusted based on the measurements of an inertial measurement unit and an image feature tracker. The combination of these two techniques in a probabilistic framework allows for stabilisation of rotational and translational ego-motion. Furthermore, it has the specific advantage of being robust to loosely calibrated and synchronised hardware since the fusion of tracking and stabilisation means that tracking uncertainty can be used to compensate for errors in calibration and synchronisation. This then completely eliminates the need for tedious calibration phases and the adverse effects of assembly slippage over time.Finally, this thesis combines the visual attention and omnidirectional stabilisation frameworks and proposes a multi view tracking system that is capable of detecting potential target objects in the maritime domain. Although the visual attention framework performed well on the benchmark datasets, the evaluation on real-world maritime imagery produced a high number of false positives. An investigation reveals that the problem is that benchmark data sets are unconsciously being influenced by human shot selection, which greatly simplifies the problem of visual attention. Despite the number of false positives, the tracking approach itself is robust even if a high number of false positives are tracked

    Análise de multidões usando coerência de vizinhança local

    Get PDF
    Large numbers of crowd analysis methods using computer vision have been developed in the past years. This dissertation presents an approach to explore characteristics inherent to human crowds – proxemics, and neighborhood relationship – with the purpose of extracting crowd features and using them for crowd flow estimation and anomaly detection and localization. Given the optical flow produced by any method, the proposed approach compares the similarity of each flow vector and its neighborhood using the Mahalanobis distance, which can be obtained in an efficient manner using integral images. This similarity value is then used either to filter the original optical flow or to extract features that describe the crowd behavior in different resolutions, depending on the radius of the personal space selected in the analysis. To show that the extracted features are indeed relevant, we tested several classifiers in the context of abnormality detection. More precisely, we used Recurrent Neural Networks, Dense Neural Networks, Support Vector Machines, Random Forest and Extremely Random Trees. The two developed approaches (crowd flow estimation and abnormality detection) were tested on publicly available datasets involving human crowded scenarios and compared with state-of-the-art methods.Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte

    Visual tracking of highly articulated objects using massively parallel processors

    Get PDF
    Hand gesture recognition has the potential of simplifying human computer interactions. However, the human hand is a highly articulated object, capable of taking on many different appearances. In this work, we consider an analysis by synthesis approach to this difficult tracking problem. We attempt to overcome the vast amount of computation required by implementing the algorithm on commodity GPUs. We also collect a lengthy sequence of hand motions from five cameras in order to train and test our algorithm. We show that to achieve good tracking performance, it is important to understand the way that the hand moves. It is of secondary importance to have a good estimate of the hand shape and to be able to process the frames as quickly as possible. Under heavily controlled circumstances, we are able to achieve full tracking accuracy
    • …
    corecore