876 research outputs found

    Image segmentation and reconstruction of 3D surfaces from carotid ultrasound images

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    PIV-based Investigation of Hemodynamic Factors in Diseased Carotid Artery Bifurcations with Varying Plaque Geometries

    Get PDF
    Ischemic stroke is often a consequence of complications due to clot formation (i.e. thrombosis) at the site of an atherosclerotic plaque developed in the internal carotid artery. Hemodynamic factors, such as shear-stress forces and flow disturbances, can facilitate the key mechanisms of thrombosis. Atherosclerotic plaques can differ in the severity of stenosis (narrowing), in eccentricity (symmetry), as well as inclusion of ulceration (wall roughness). Therefore, in terms of clinical significance, it is important to investigate how the local hemodynamics of the carotid artery is mediated by the geometry of plaque. Knowledge of thrombosis-associated hemodynamics may provide a basis to introduce advanced clinical diagnostic indices that reflect the increased probability of thrombosis and thus assist with better estimation of stroke risk, which is otherwise primarily assessed based on the degree of narrowing of the lumen. A stereoscopic particle image velocimetry (stereo-PIV) system was configured to obtain instantaneous full-field velocity measurements in life-sized carotid artery models. Extraction of the central-plane and volumetric features of the flow revealed the complexity of the stenotic carotid flow, which increased with increasing stenosis severity and changed with the symmetry of the plaque. Evaluation of the energy content of two models of the stenosed carotid bifurcation provided insight on the expected level of flow instabilities with potential clinical implications. Studies in a comprehensive family of eight models ranging from disease-free to severely stenosed (30%, 50%, 70% diameter reduction) and with two types of plaque symmetry (concentric or eccentric), as well as a single ulcerated stenosed model, clearly demonstrated the significance of plaque geometry in marked alteration of the levels and patterns of downstream flow disturbances and shear stress. Plaque eccentricity and ulceration resulted in enhanced flow disturbances. In addition, shear-stress patterns in those models with eccentric stenosis were suggestive of increased thrombosis potential at the post-stenotic recirculation zone compared to their concentric counterpart plaques

    Hemodynamics in the Stenosed Carotid Bifurcation with Plaque Ulceration

    Get PDF
    The presence of irregular plaque surface morphology or ulceration of the atherosclerotic lesion has been identified as an independent risk factor for ischemic stroke. Doppler ultrasound (DUS) is the most commonly performed non-invasive technique used to assess patients suspected of having carotid artery disease, but currently does not incorporate the diagnosis of plaque ulceration. Advanced Doppler analyses incorporating quantitative estimates of flow disturbances may result in diagnostic indices that identify plaque ulcerative conditions. A technique for the fabrication of DUS-compatible flow phantoms was developed, using a direct-machining method that is amenable to comprehensive DUS investigations. In vitro flow studies in an ensemble of matched model vessel geometries determined that ulceration as small as 2 mm can generate significant disturbances in the downstream flow field in a moderately stenosed carotid artery, which are detectable using the DUS velocity-derived parameter turbulence intensity (TI) measured with a clinical system. Further experimental results showed that distal TI was significantly elevated (P \u3c 0.001) due to proximal plaque ulceration in the mild and moderately stenosed carotid bifurcation (30%, 50%, 60% diameter reduction), and also increased with stenosis severity. Pulsatile computational fluid dynamics (CFD) models, with simulated particle tracking, demonstrated enhanced flow disruption of the stenotic jet and slight elevations in path-dependent shear exposure parameters in a stenosed carotid bifurcation model with ulceration. In addition, CFD models were used to evaluate the DUS index TI using finite volume sampling

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun

    Vascular Segmentation Algorithms for Generating 3D Atherosclerotic Measurements

    Get PDF
    Atherosclerosis manifests as plaques within large arteries of the body and remains as a leading cause of mortality and morbidity in the world. Major cardiovascular events may occur in patients without known preexisting symptoms, thus it is important to monitor progression and regression of the plaque burden in the arteries for evaluating patient\u27s response to therapy. In this dissertation, our main focus is quantification of plaque burden from the carotid and femoral arteries, which are major sites for plaque formation, and are straight forward to image noninvasively due to their superficial location. Recently, 3D measurements of plaque burden have shown to be more sensitive to the changes of plaque burden than one-/two-dimensional measurements. However, despite the advancements of 3D noninvasive imaging technology with rapid acquisition capabilities, and the high sensitivity of the 3D plaque measurements of plaque burden, they are still not widely used due to the inordinate amount of time and effort required to delineate artery walls plus plaque boundaries to obtain 3D measurements from the images. Therefore, the objective of this dissertation is developing novel semi-automated segmentation methods to alleviate measurement burden from the observer for segmentation of the outer wall and lumen boundaries from: (1) 3D carotid ultrasound (US) images, (2) 3D carotid black-blood magnetic resonance (MR) images, and (3) 3D femoral black-blood MR images. Segmentation of the carotid lumen and outer wall from 3DUS images is a challenging task due to low image contrast, for which no method has been previously reported. Initially, we developed a 2D slice-wise segmentation algorithm based on the level set method, which was then extended to 3D. The 3D algorithm required fewer user interactions than manual delineation and the 2D method. The algorithm reduced user time by ≈79% (1.72 vs. 8.3 min) compared to manual segmentation for generating 3D-based measurements with high accuracy (Dice similarity coefficient (DSC)\u3e90%). Secondly, we developed a novel 3D multi-region segmentation algorithm, which simultaneously delineates both the carotid lumen and outer wall surfaces from MR images by evolving two coupled surfaces using a convex max-flow-based technique. The algorithm required user interaction only on a single transverse slice of the 3D image for generating 3D surfaces of the lumen and outer wall. The algorithm was parallelized using graphics processing units (GPU) to increase computational speed, thus reducing user time by 93% (0.78 vs. 12 min) compared to manual segmentation. Moreover, the algorithm yielded high accuracy (DSC \u3e 90%) and high precision (intra-observer CV \u3c 5.6% and inter-observer CV \u3c 6.6%). Finally, we developed and validated an algorithm based on convex max-flow formulation to segment the femoral arteries that enforces a tubular shape prior and an inter-surface consistency of the outer wall and lumen to maintain a minimum separation distance between the two surfaces. The algorithm required the observer to choose only about 11 points on its medial axis of the artery to yield the 3D surfaces of the lumen and outer wall, which reduced the operator time by 97% (1.8 vs. 70-80 min) compared to manual segmentation. Furthermore, the proposed algorithm reported DSC greater than 85% and small intra-observer variability (CV ≈ 6.69%). In conclusion, the development of robust semi-automated algorithms for generating 3D measurements of plaque burden may accelerate translation of 3D measurements to clinical trials and subsequently to clinical care

    Optical coherence tomography for the assessment of coronary atherosclerosis and vessel response after stent implantation

    Get PDF
    Optical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light to create high-resolution cross sectional images of the vessel. The technology refinement achieved in the last years has made this imaging modality less procedurally demanding opening its possibilities for clinical use. The present thesis provides im
    • …
    corecore