846 research outputs found

    Model Agnostic Saliency for Weakly Supervised Lesion Detection from Breast DCE-MRI

    Full text link
    There is a heated debate on how to interpret the decisions provided by deep learning models (DLM), where the main approaches rely on the visualization of salient regions to interpret the DLM classification process. However, these approaches generally fail to satisfy three conditions for the problem of lesion detection from medical images: 1) for images with lesions, all salient regions should represent lesions, 2) for images containing no lesions, no salient region should be produced,and 3) lesions are generally small with relatively smooth borders. We propose a new model-agnostic paradigm to interpret DLM classification decisions supported by a novel definition of saliency that incorporates the conditions above. Our model-agnostic 1-class saliency detector (MASD) is tested on weakly supervised breast lesion detection from DCE-MRI, achieving state-of-the-art detection accuracy when compared to current visualization methods

    Pre and Post-hoc Diagnosis and Interpretation of Malignancy from Breast DCE-MRI

    Full text link
    We propose a new method for breast cancer screening from DCE-MRI based on a post-hoc approach that is trained using weakly annotated data (i.e., labels are available only at the image level without any lesion delineation). Our proposed post-hoc method automatically diagnosis the whole volume and, for positive cases, it localizes the malignant lesions that led to such diagnosis. Conversely, traditional approaches follow a pre-hoc approach that initially localises suspicious areas that are subsequently classified to establish the breast malignancy -- this approach is trained using strongly annotated data (i.e., it needs a delineation and classification of all lesions in an image). Another goal of this paper is to establish the advantages and disadvantages of both approaches when applied to breast screening from DCE-MRI. Relying on experiments on a breast DCE-MRI dataset that contains scans of 117 patients, our results show that the post-hoc method is more accurate for diagnosing the whole volume per patient, achieving an AUC of 0.91, while the pre-hoc method achieves an AUC of 0.81. However, the performance for localising the malignant lesions remains challenging for the post-hoc method due to the weakly labelled dataset employed during training.Comment: Submitted to Medical Image Analysi

    Performance of a fully automatic lesion detection system for breast DCE-MRI

    Get PDF
    PURPOSE: To describe and test a new fully automatic lesion detection system for breast DCE-MRI. MATERIALS AND METHODS: Studies were collected from two institutions adopting different DCE-MRI sequences, one with and the other one without fat-saturation. The detection pipeline consists of (i) breast segmentation, to identify breast size and location; (ii) registration, to correct for patient movements; (iii) lesion detection, to extract contrast-enhanced regions using a new normalization technique based on the contrast-uptake of mammary vessels; (iv) false positive (FP) reduction, to exclude contrast-enhanced regions other than lesions. Detection rate (number of system-detected malignant and benign lesions over the total number of lesions) and sensitivity (system-detected malignant lesions over the total number of malignant lesions) were assessed. The number of FPs was also assessed. RESULTS: Forty-eight studies with 12 benign and 53 malignant lesions were evaluated. Median lesion diameter was 6 mm (range, 5-15 mm) for benign and 26 mm (range, 5-75 mm) for malignant lesions. Detection rate was 58/65 (89%; 95% confidence interval [CI] 79%-95%) and sensitivity was 52/53 (98%; 95% CI 90%-99%). Mammary median FPs per breast was 4 (1st-3rd quartiles 3-7.25). CONCLUSION: The system showed promising results on MR datasets obtained from different scanners producing fat-sat or non-fat-sat images with variable temporal and spatial resolution and could potentially be used for early diagnosis and staging of breast cancer to reduce reading time and to improve lesion detection. Further evaluation is needed before it may be used in clinical practice

    A Pipelined Tracer-Aware Approach for Lesion Segmentation in Breast DCE-MRI

    Get PDF
    The recent spread of Deep Learning (DL) in medical imaging is pushing researchers to explore its suitability for lesion segmentation in Dynamic Contrast-Enhanced Magnetic-Resonance Imaging (DCE-MRI), a complementary imaging procedure increasingly used in breast-cancer analysis. Despite some promising proposed solutions, we argue that a “naive” use of DL may have limited effectiveness as the presence of a contrast agent results in the acquisition of multimodal 4D images requiring thorough processing before training a DL model. We thus propose a pipelined approach where each stage is intended to deal with or to leverage a peculiar characteristic of breast DCE-MRI data: the use of a breast-masking pre-processing to remove non-breast tissues; the use of Three-Time-Points (3TP) slices to effectively highlight contrast agent time course; the application of a motion-correction technique to deal with patient involuntary movements; the leverage of a modified U-Net architecture tailored on the problem; and the introduction of a new “Eras/Epochs” training strategy to handle the unbalanced dataset while performing a strong data augmentation. We compared our pipelined solution against some literature works. The results show that our approach outperforms the competitors by a large margin (+9.13% over our previous solution) while also showing a higher generalization ability

    Breast cancer mass detection in dce-mri using deep-learning features followed by discrimination of infiltrative vs. in situ carcinoma through a machine-learning approach

    Get PDF
    Breast cancer is the leading cause of cancer deaths worldwide in women. This aggressive tumor can be categorized into two main groups-in situ and infiltrative, with the latter being the most common malignant lesions. The current use of magnetic resonance imaging (MRI) was shown to provide the highest sensitivity in the detection and discrimination between benign vs. malignant lesions, when interpreted by expert radiologists. In this article, we present the prototype of a computer-aided detection/diagnosis (CAD) system that could provide valuable assistance to radiologists for discrimination between in situ and infiltrating tumors. The system consists of two main processing levels-(1) localization of possibly tumoral regions of interest (ROIs) through an iterative procedure based on intensity values (ROI Hunter), followed by a deep-feature extraction and classification method for false-positive rejection; and (2) characterization of the selected ROIs and discrimination between in situ and invasive tumor, consisting of Radiomics feature extraction and classification through a machine-learning algorithm. The CAD system was developed and evaluated using a DCE-MRI image database, containing at least one confirmed mass per image, as diagnosed by an expert radiologist. When evaluating the accuracy of the ROI Hunter procedure with respect to the radiologist-drawn boundaries, sensitivity to mass detection was found to be 75%. The AUC of the ROC curve for discrimination between in situ and infiltrative tumors was 0.70
    • …
    corecore