181 research outputs found

    Development of Healthcare Kiosk for Checking Heart Health

    Get PDF
    The main problem encountered nowadays in the health field, especially in health care is the growing number of population and the decreasing health facilities. In this regard, healthcare kiosk is used as an alternative to the health care facilities. Heart disease is a dangerous one which could threaten human life. Many people have died due to heart disease and the surgery itself is still very expensive. To analyze heart diseases, doctor usually takes a video of the heart movement using ultrasound equipment to distinguish between normal and abnormal case. The results of analysis vary depending on the accuracy and experience of each doctor so it is difficult to determine the actual situation. Therefore, a method using healthcare kiosk to check the heart health is needed to help doctor and improve the health care facilities. The aim of this research is to develop healthcare kiosk which can be used to check the heart health. This research method is divided into three main parts: firstly, preprocessing to clarify the quality of the image.In this section, the writers propose a Median High Boost Filter method which is a combined method of Median Filtering and High Boost Filtering. Secondly, segmentation is used to obtain local cavities of the heart. In this part, the writers propose using Triangle Equation that is a new method to be developed. Thirdly, classification using Partial Monte Carlo method and artificial neural network method; these methods are used to measure the area of the heart cavity and discover the possibility of cardiac abnormalities. Methods for detecting heart health are placed in the kiosk. Therefore, it is expected to facilitate and improve the healthcare facilities.Keywords: Healthcare kiosk, heart health, reprocessing, segmentation, classification

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaCardiovascular diseases (CVDs) are the leading cause of death in the world, representing 30% of all global deaths. Among others, assessment of the left ventricular (LV) morphology and global function using non-invasive cardiac imaging is an interesting technique for diagnosis and treatment follow-up of patients with CVDs. Nowadays, cardiac magnetic resonance (CMR) imaging is the gold-standard technique for the quantification of LV volumes, mass and ejection fraction, requiring the delineation of endocardial and epicardial contours of the left ventricle from cine MR images. In clinical practice, the physicians perform this segmentation manually, being a tedious, time consuming and unpractical task. Even though several (semi-)automated methods have been presented for LV CMR segmentation, fast, automatic and optimal boundaries assessment is still lacking, usually requiring the physician to manually correct the contours. In the present work, we propose a novel fast fully automatic 3D+time LV segmentation framework for CMR datasets. The proposed framework presents three conceptual blocks: 1) an automatic 2D mid-ventricular initialization and segmentation; 2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and 3) a tracking procedure to delineate both endo and epicardial contours throughout the cardiac cycle. In each block, specific CMR-targeted algorithms are proposed for the different steps required. Hereto, we propose automatic and feasible initialization procedures. Moreover, we adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR image segmentation by integrating dedicated energy terms and making use of a cylindrical coordinate system that better fits the topology of CMR data. At last, two tracking methods are presented and compared. The proposed framework has been validated on 45 4D CMR datasets from a publicly available database and on a large database from an ongoing multi-center clinical trial with 318 4D datasets. In the technical validation, the framework showed competitive results against the state-of-the-art methods, presenting leading results in both accuracy and average computational time in the common database used for comparative purposes. Moreover, the results in the large scale clinical validation confirmed the high feasibility and robustness of the proposed framework for accurate LV morphology and global function assessment. In combination with the low computational burden of the method, the present methodology seems promising to be used in daily clinical practice.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, representando 30% destas a nível global. Na prática clínica, uma técnica empregue no diagnóstico de pacientes com DCVs é a avaliação da morfologia e da função global do ventrículo esquerdo (VE), através de técnicas de imagiologia não-invasivas. Atualmente, a ressonância magnética cardíaca (RMC) é a modalidade de referência na quantificação dos volumes, massa e fração de ejeção do VE, exigindo a delimitação dos contornos do endocárdio e epicárdio a partir de imagens dinâmicas de RMC. Na prática clínica diária, o método preferencial é a segmentação manual. No entanto, esta é uma tarefa demorada, sujeita a erro humano e pouco prática. Apesar de até à data diversos métodos (semi)-automáticos terem sido apresentados para a segmentação do VE em imagens de RMC, ainda não existe um método capaz de avaliar idealmente os contornos de uma forma automática, rápida e precisa, levando a que geralmente o médico necessite de corrigir manualmente os contornos. No presente trabalho é proposta uma nova framework para a segmentação automática do VE em imagens 3D+tempo de RMC. O algoritmo apresenta três blocos principais: 1) uma inicialização e segmentação automática 2D num corte medial do ventrículo; 2) uma inicialização e segmentação tridimensional no volume correspondente ao final da diástole; e 3) um algoritmo de tracking para obter os contornos ao longo de todo o ciclo cardíaco. Neste sentido, são propostos procedimentos de inicialização automática com elevada robustez. Mais ainda, é proposta uma adaptação da recente framework “B-spline Explicit Active Surfaces” (BEAS) com a integração de uma energia específica para as imagens de RMC e utilizando uma formulação cilíndrica para tirar partido da topologia destas imagens. Por último, são apresentados e comparados dois algoritmos de tracking para a obtenção dos contornos ao longo do tempo. A framework proposta foi validada em 45 datasets de RMC provenientes de uma base de dados disponível ao público, bem como numa extensa base de dados com 318 datasets para uma validação clínica. Na avaliação técnica, a framework proposta obteve resultados competitivos quando comparada com outros métodos do estado da arte, tendo alcançado resultados de precisão e tempo computacional superiores a estes. Na validação clínica em larga escala, a framework provou apresentar elevada viabilidade e robustez na avaliação da morfologia e função global do VE. Em combinação com o baixo custo computacional do algoritmo, a presente metodologia apresenta uma perspetiva promissora para a sua aplicação na prática clínica diária

    Generative Interpretation of Medical Images

    Get PDF

    Automated image analysis techniques for cardiovascular magnetic resonance imaging

    Get PDF
    The introductory chapter provides an overview of various aspects related to quantitative analysis of cardiovascular MR (CMR) imaging studies. Subsequently, the thesis describes several automated methods for quantitative assessment of left ventricular function from CMR imaging studies. Several novel computer algorithms are introduced and validated for automated segmentation of short-axis CMR images and validated by comparing functional results derived from automated segmentation with results derived from manually traced contours. In addition an automated method is presented for assessment of flow through the aorta based on Phase-Contrast flow velocity mapping MRI. Finally a method is presented for accurate assessment of the thickness of the left ventricular myocardium taking advantage of the three-dimensional nature of MRI.UBL - phd migration 201

    Improved Left Ventricular Mass Quantification with Partial Voxel Interpolation – In-Vivo and Necropsy Validation of a Novel Cardiac MRI Segmentation Algorithm

    Get PDF
    Background—CMR typically quantifies LV mass (LVM) via manual planimetry (MP), but this approach is time consuming and does not account for partial voxel components - myocardium admixed with blood in a single voxel. Automated segmentation (AS) can account for partial voxels, but this has not been used for LVM quantification. This study used automated CMR segmentation to test the influence of partial voxels on quantification of LVM. Methods and Results—LVM was quantified by AS and MP in 126 consecutive patients and 10 laboratory animals undergoing CMR. AS yielded both partial voxel (ASPV) and full voxel (ASFV) measurements. Methods were independently compared to LVM quantified on echocardiography (echo) and an ex-vivo standard of LVM at necropsy. AS quantified LVM in all patients, yielding a 12-fold decrease in processing time vs. MP (0:21±0:04 vs. 4:18±1:02 min; pFV mass (136±35gm) was slightly lower than MP (139±35; Δ=3±9gm, pPV yielded higher LVM (159±38gm) than MP (Δ=20±10gm) and ASFV (Δ=23±6gm, both pPV and ASFV correlated with larger voxel size (partial r=0.37, pPV yielded better agreement with echo (Δ=20±25gm) than did ASFV (Δ=43±24gm) or MP (Δ=40±22gm, both pPV and ex-vivo results were similar (Δ=1±3gm, p=0.3), whereas ASFV (6±3g, P\u3c0.001) and MP (4±5 g, P=0.02) yielded small but significant differences with LVM at necropsy
    corecore