377 research outputs found

    Unsupervised Named-Entity Recognition: Generating Gazetteers and Resolving Ambiguity

    Get PDF
    In this paper, we propose a named-entity recognition (NER) system that addresses two major limitations frequently discussed in the field. First, the system requires no human intervention such as manually labeling training data or creating gazetteers. Second, the system can handle more than the three classical named-entity types (person, location, and organization). We describe the system’s architecture and compare its performance with a supervised system. We experimentally evaluate the system on a standard corpus, with the three classical named-entity types, and also on a new corpus, with a new named-entity type (car brands)

    Exploring the boundaries: gene and protein identification in biomedical text

    Get PDF
    Background: Good automatic information extraction tools offer hope for automatic processing of the exploding biomedical literature, and successful named entity recognition is a key component for such tools. Methods: We present a maximum-entropy based system incorporating a diverse set of features for identifying gene and protein names in biomedical abstracts. Results: This system was entered in the BioCreative comparative evaluation and achieved a precision of 0.83 and recall of 0.84 in the “open ” evaluation and a precision of 0.78 and recall of 0.85 in the “closed ” evaluation. Conclusions: Central contributions are rich use of features derived from the training data at multiple levels of granularity, a focus on correctly identifying entity boundaries, and the innovative use of several external knowledge sources including full MEDLINE abstracts and web searches. Background The explosion of information in the biomedical domain and particularly in genetics has highlighted the need for automated text information extraction techniques. MEDLINE, the primary research database serving the biomedical community, currently contains over 14 million abstracts, with 60,000 new abstracts appearing each month. There is also an impressive number of molecular biological databases covering a

    Automatic rule learning exploiting morphological features for named entity recognition in Turkish

    Get PDF
    Named entity recognition (NER) is one of the basic tasks in automatic extraction of information from natural language texts. In this paper, we describe an automatic rule learning method that exploits different features of the input text to identify the named entities located in the natural language texts. Moreover, we explore the use of morphological features for extracting named entities from Turkish texts. We believe that the developed system can also be used for other agglutinative languages. The paper also provides a comprehensive overview of the field by reviewing the NER research literature. We conducted our experiments on the TurkIE dataset, a corpus of articles collected from different Turkish newspapers. Our method achieved an average F-score of 91.08% on the dataset. The results of the comparative experiments demonstrate that the developed technique is successfully applicable to the task of automatic NER and exploiting morphological features can significantly improve the NER from Turkish, an agglutinative language. © The Author(s) 2011

    Semi-Supervised Named Entity Recognition:\ud Learning to Recognize 100 Entity Types with Little Supervision\ud

    Get PDF
    Named Entity Recognition (NER) aims to extract and to classify rigid designators in text such as proper names, biological species, and temporal expressions. There has been growing interest in this field of research since the early 1990s. In this thesis, we document a trend moving away from handcrafted rules, and towards machine learning approaches. Still, recent machine learning approaches have a problem with annotated data availability, which is a serious shortcoming in building and maintaining large-scale NER systems. \ud \ud In this thesis, we present an NER system built with very little supervision. Human supervision is indeed limited to listing a few examples of each named entity (NE) type. First, we introduce a proof-of-concept semi-supervised system that can recognize four NE types. Then, we expand its capacities by improving key technologies, and we apply the system to an entire hierarchy comprised of 100 NE types. \ud \ud Our work makes the following contributions: the creation of a proof-of-concept semi-supervised NER system; the demonstration of an innovative noise filtering technique for generating NE lists; the validation of a strategy for learning disambiguation rules using automatically identified, unambiguous NEs; and finally, the development of an acronym detection algorithm, thus solving a rare but very difficult problem in alias resolution. \ud \ud We believe semi-supervised learning techniques are about to break new ground in the machine learning community. In this thesis, we show that limited supervision can build complete NER systems. On standard evaluation corpora, we report performances that compare to baseline supervised systems in the task of annotating NEs in texts. \u

    Web based knowledge extraction and consolidation for automatic ontology instantiation

    Get PDF
    The Web is probably the largest and richest information repository available today. Search engines are the common access routes to this valuable source. However, the role of these search engines is often limited to the retrieval of lists of potentially relevant documents. The burden of analysing the returned documents and identifying the knowledge of interest is therefore left to the user. The Artequakt system aims to deploy natural language tools to automatically ex-tract and consolidate knowledge from web documents and instantiate a given ontology, which dictates the type and form of knowledge to extract. Artequakt focuses on the domain of artists, and uses the harvested knowledge to gen-erate tailored biographies. This paper describes the latest developments of the system and discusses the problem of knowledge consolidation

    Analysing the problem and main approaches for ontology population

    Get PDF
    Knowledge systems are a suitable computational approach to solve complex problems and to provide decision support. Ontologies are an approach for knowledge representation and Ontology Population looks for instantiating the constituent elements of an ontology, like properties and non-taxonomic relationships. Manual population by domain experts and knowledge engineers is an expensive and time consuming task. Thus, automatic or semi-automatic approaches are needed. This paper discusses the problem of Automatic Ontology Population and proposes a generic process specifying its phases and what kind of techniques can be used to perform the activities of each phase. Some techniques representing the state of the art of this field are also described along with the solutions they adopt for each phase of the AOP process with their advantages and limitations. This work is part of HERMES, a Brazil/Portugal research cooperation project looking for techniques and tools for automating the process of ontology learning and population.This work is supported by CNPq, CAPES and FAPEMA, research funding agencies of the Brazilian government
    • …
    corecore