1,753 research outputs found

    Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review

    Get PDF
    Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platformfacilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platformwas launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 andMay 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges.Peer ReviewedPostprint (published version

    The SWADE model for landslide dating in time series of optical satellite imagery

    Get PDF
    Landslides are destructive natural hazards that cause substantial loss of life and impact on natural and built environments. Landslide frequencies are important inputs for hazard assessments. However, dating landslides in remote areas is often challenging. We propose a novel landslide dating technique based on Segmented WAvelet-DEnoising and stepwise linear fitting (SWADE), using the Landsat archive (1985–2017). SWADE employs the principle that vegetation is often removed by landsliding in vegetated areas, causing a temporal decrease in normalized difference vegetation index (NDVI). The applicability of SWADE and two previously published methods for landslide dating, harmonic modelling and LandTrendr, are evaluated using 66 known landslides in the Buckinghorse River area, northeastern British Columbia, Canada. SWADE identifies sudden changes of NDVI values in the time series and this may result in one or more probable landslide occurrence dates. The most-probable date range identified by SWADE detects 52% of the landslides within a maximum error of 1 year, and 62% of the landslides within a maximum error of 2 years. Comparatively, these numbers increase to 68% and 80% when including the two most-probable landslide date ranges, respectively. Harmonic modelling detects 79% of the landslides with a maximum error of 1 year, and 82% of the landslides with a maximum error of 2 years, but requires expert judgement and a well-developed seasonal vegetation cycle in contrast to SWADE. LandTrendr, originally developed for mapping deforestation, only detects 42% of landslides within a maximum error of 2 years. SWADE provides a promising fully automatic method for landslide dating, which can contribute to constructing landslide frequency-magnitude distributions in remote areas

    Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery

    Get PDF
    The land area covered by freely available very high-resolution (VHR) imagery has grown dramatically over recent years, which has considerable relevance for forest observation and monitoring. For example, it is possible to recognize and extract a number of features related to forest type, forest management, degradation and disturbance using VHR imagery. Moreover, time series of medium-to-high-resolution imagery such as MODIS, Landsat or Sentinel has allowed for monitoring of parameters related to forest cover change. Although automatic classification is used regularly to monitor forests using medium-resolution imagery, VHR imagery and changes in web-based technology have opened up new possibilities for the role of visual interpretation in forest observation. Visual interpretation of VHR is typically employed to provide training and/or validation data for other remote sensing-based techniques or to derive statistics directly on forest cover/forest cover change over large regions. Hence, this paper reviews the state of the art in tools designed for visual interpretation of VHR, including Geo-Wiki, LACO-Wiki and Collect Earth as well as issues related to interpretation of VHR imagery and approaches to quality assurance. We have also listed a number of success stories where visual interpretation plays a crucial role, including a global forest mask harmonized with FAO FRA country statistics; estimation of dryland forest area; quantification of deforestation; national reporting to the UNFCCC; and drivers of forest change

    Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine

    Get PDF
    Four burned area tools were implemented in Google Earth Engine (GEE), to obtain regular processes related to burned area (BA) mapping, using medium spatial resolution sensors (Landsat and Sentinel-2). The four tools are (i) the BA Cartography tool for supervised burned area over the user-selected extent and period, (ii) two tools implementing a BA stratified random sampling to select the scenes and dates for validation, and (iii) the BA Reference Perimeter tool to obtain highly accurate BA maps that focus on validating coarser BA products. Burned Area Mapping Tools (BAMTs) go beyond the previously implemented Burned Area Mapping Software (BAMS) because of GEE parallel processing capabilities and preloaded geospatial datasets. BAMT also allows temporal image composites to be exploited in order to obtain BA maps over a larger extent and longer temporal periods. The tools consist of four scripts executable from the GEE Code Editor. The tools’ performance was discussed in two case studies: in the 2019/2020 fire season in Southeast Australia, where the BA cartography detected more than 50,000 km2, using Landsat data with commission and omission errors below 12% when compared to Sentinel-2 imagery; and in the 2018 summer wildfires in Canada, where it was found that around 16,000 km2 had burned.This research was funded by the Vice-Rectorate for Research of the University of the Basque Country (UPV/EHU) through a doctoral fellowship (contract no. PIF17/96)

    Automatic mapping of burned areas using Landsat 8 time-series images in Google Earth engine: a case study from Iran

    Get PDF
    Due to the natural conditions and inappropriate management responses, large part of plains and forests in Iran have been burned in recent years. Given the increasing availability of open-access satellite images and open-source software packages, we developed a fast and cost-effective remote sensing methodology for characterizing burned areas for the entire country of Iran. We mapped the fire-affected areas using a post-classification supervised method and Landsat 8 time-series images. To this end, the Google Earth Engine (GEE) and Google Colab computing services were used to facilitate the downloading and processing of images as well as allowing for effective implementation of the algorithms. In total, 13 spectral indices were calculated using Landsat 8 images and were added to the nine original bands of Landsat 8. The training polygons of the burned and unburned areas were accurately distinguished based on the information acquired from the Iranian Space Agency (ISA), Sentinel-2 images, and Fire Information for Resource Management System (FIRMS) products. A combination of Genetic Algorithm (GA) and Neural Network (NN) approaches was then implemented to specify 19 optimal features out of the 22 bands. The 19 optimal bands were subsequently applied to two classifiers of NN and Random Forest (RF) in the timespans of 1 January 2019 to 30 December 2020 and of 1 January 2021 to 30 September 2021. The overall classification accuracies of 94% and 96% were obtained for these two classifiers, respectively. The omission and commission errors of both classifiers were also less than 10%, indicating the promising capability of the proposed methodology in detecting the burned areas. To detect the burned areas caused by the wildfire in 2021, the image differencing method was used as well. The resultant models were finally compared to the MODIS fire products over 10 sampled polygons of the burned areas. Overall, the models had a high accuracy in detecting the burned areas in terms of shape and perimeter, which can be further implicated for potential prevention strategies of endangered biodiversity.Peer ReviewedPostprint (published version

    ON THE APPLICATION OF REMOTE SENSING TIME SERIES ANALYSIS FOR LAND COVER MAPPING: SPECTRAL INDICES FOR CROPS CLASSIFICATION

    Get PDF
    Abstract. This study aims to introduce a semi-automatic classification workflow for the production of a land use/land cover (LULC) map of the island of Sardinia (Italy) following the CORINE legend schema, and a ground spatial resolution compatible with a scale of 1:25.000. The classification is based on free high-resolution satellite imagery from Sentinel-1 and Sentinel-2 collected in 2020, ancillary data derived from Sardinian Geoportal, Joint Research Centre (JRC) and OpenStreetMap. The LULC map production includes three steps: 1) pixel-based classification, realized with two different approaches, that use i) information derived from existing thematic maps eventually re-coded in case of incoherencies observed between datasets and/or satellite data products, and ii) spectral indices and parameter thresholds defined on the basis of multitemporal analysis; 2) segmentation of Sentinel-1 and 2 annual composites, and pre-labelling of segments with the pixel-based classified map, obtaining the preliminary map; 3) visual inspection procedure in order to confirm, or re-assign, classes to polygons. The accuracy of the preliminary map was tested in a sample area and on specific class of non-irrigated crops through ground truth data collected from a detailed photo-interpretation, estimating 97% of overall accuracy. The results show a great improvement from existing thematic maps in terms of detail, with the possibility of a yearly updating of the map via automatic processes. However, some limitations were found, due to the high fragmentation of Sardinian landscape and the high variety of crop types and agricultural practices, that could affect the efficiency of the classifier

    COMPARISON OF MACHINE LEARNING ALGORITHMS FOR LAND USE AND LAND COVER ANALYSIS USING GOOGLE EARTH ENGINE (CASE STUDY: WANGGU WATERSHED)

    Get PDF
    Human population growth and land use and land cover (LULC) change have always developed side by side. Considering selection of a good Machine Learning (ML) classifier algorithm is needed considering the high estimation of LULC maps based on remote sensing. This study aims to produce a LULC classification of Landsat-8 and Sentinel-2 images by comparing the accuracy performance of three ML algorithms, namely: Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Machine (SVM). Dataset comparison ratios were also explored to find the LULC classification results with the best accuracy. Sentinel-2 is better than Landsat-8 regarding Overall Accuracy (OA) and Coefficient Kappa. The comparison ratio of the training and testing datasets with a good level of accuracy is 70:30 on both images with the average OA Landsat-8 and Sentinel-2 being 92.09% and 94.21%, respectively. The RF algorithm outperforms CART and SVM in both types of satellite imagery. The mean OA of the CART, RF, and SVM classifiers was 92.03%, 94.74%, 83.54% on Landsat-8, 93.14%, 96.15%, and 93.34% on Sentinel-2, respectively

    Google earth engine as multi-sensor open-source tool for supporting the preservation of archaeological areas: The case study of flood and fire mapping in metaponto, italy

    Get PDF
    In recent years, the impact of Climate change, anthropogenic and natural hazards (such as earthquakes, landslides, floods, tsunamis, fires) has dramatically increased and adversely affected modern and past human buildings including outstanding cultural properties and UNESCO heritage sites. Research about protection/monitoring of cultural heritage is crucial to preserve our cultural properties and (with them also) our history and identity. This paper is focused on the use of the open-source Google Earth Engine tool herein used to analyze flood and fire events which affected the area of Metaponto (southern Italy), near the homonymous Greek-Roman archaeological site. The use of the Google Earth Engine has allowed the supervised and unsupervised classification of areas affected by flooding (2013–2020) and fire (2017) in the past years, obtaining remarkable results and useful information for setting up strategies to mitigate damage and support the preservation of areas and landscape rich in cultural and natural heritage

    Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery

    Get PDF
    Within water resources management, surface water area (SWA) variation plays a vital role in hydrological processes as well as in agriculture, environmental ecosystems, and ecological processes. The monitoring of long-term spatiotemporal SWA changes is even more critical within highly populated regions that have an arid or semi-arid climate, such as Iran. This paper examined variations in SWA in Iran from 1990 to 2021 using about 18,000 Landsat 5, 7, and 8 satellite images through the Google Earth Engine (GEE) cloud processing platform. To this end, the performance of twelve water mapping rules (WMRs) within remotely-sensed imagery was also evaluated. Our findings revealed that (1) methods which provide a higher separation (derived from transformed divergence (TD) and Jefferies–Matusita (JM) distances) between the two target classes (water and non-water) result in higher classification accuracy (overall accuracy (OA) and user accuracy (UA) of each class). (2) Near-infrared (NIR)-based WMRs are more accurate than short-wave infrared (SWIR)-based methods for arid regions. (3) The SWA in Iran has an overall downward trend (observed by linear regression (LR) and sequential Mann–Kendall (SQMK) tests). (4) Of the five major water basins, only the Persian Gulf Basin had an upward trend. (5) While temperature has trended upward, the precipitation and normalized difference vegetation index (NDVI), a measure of the country’s greenness, have experienced a downward trend. (6) Precipitation showed the highest correlation with changes in SWA (r = 0.69). (7) Long-term changes in SWA were highly correlated (r = 0.98) with variations in the JRC world water map
    • …
    corecore