203 research outputs found

    A distributional investigation of German verbs

    Get PDF
    Diese Dissertation bietet eine empirische Untersuchung deutscher Verben auf der Grundlage statistischer Beschreibungen, die aus einem großen deutschen Textkorpus gewonnen wurden. In einem kurzen Überblick über linguistische Theorien zur lexikalischen Semantik von Verben skizziere ich die Idee, dass die Verbbedeutung wesentlich von seiner Argumentstruktur (der Anzahl und Art der Argumente, die zusammen mit dem Verb auftreten) und seiner Aspektstruktur (Eigenschaften, die den zeitlichen Ablauf des vom Verb denotierten Ereignisses bestimmen) abhängt. Anschließend erstelle ich statistische Beschreibungen von Verben, die auf diesen beiden unterschiedlichen Bedeutungsfacetten basieren. Insbesondere untersuche ich verbale Subkategorisierung, Selektionspräferenzen und Aspekt. Alle diese Modellierungsstrategien werden anhand einer gemeinsamen Aufgabe, der Verbklassifikation, bewertet. Ich zeige, dass im Rahmen von maschinellem Lernen erworbene Merkmale, die verbale lexikalische Aspekte erfassen, für eine Anwendung von Vorteil sind, die Argumentstrukturen betrifft, nämlich semantische Rollenkennzeichnung. Darüber hinaus zeige ich, dass Merkmale, die die verbale Argumentstruktur erfassen, bei der Aufgabe, ein Verb nach seiner Aspektklasse zu klassifizieren, gut funktionieren. Diese Ergebnisse bestätigen, dass diese beiden Facetten der Verbbedeutung auf grundsätzliche Weise zusammenhängen.This dissertation provides an empirical investigation of German verbs conducted on the basis of statistical descriptions acquired from a large corpus of German text. In a brief overview of the linguistic theory pertaining to the lexical semantics of verbs, I outline the idea that verb meaning is composed of argument structure (the number and types of arguments that co-occur with a verb) and aspectual structure (properties describing the temporal progression of an event referenced by the verb). I then produce statistical descriptions of verbs according to these two distinct facets of meaning: In particular, I examine verbal subcategorisation, selectional preferences, and aspectual type. All three of these modelling strategies are evaluated on a common task, automatic verb classification. I demonstrate that automatically acquired features capturing verbal lexical aspect are beneficial for an application that concerns argument structure, namely semantic role labelling. Furthermore, I demonstrate that features capturing verbal argument structure perform well on the task of classifying a verb for its aspectual type. These findings suggest that these two facets of verb meaning are related in an underlying way

    A Kind Introduction to Lexical and Grammatical Aspect, with a Survey of Computational Approaches

    Full text link
    Aspectual meaning refers to how the internal temporal structure of situations is presented. This includes whether a situation is described as a state or as an event, whether the situation is finished or ongoing, and whether it is viewed as a whole or with a focus on a particular phase. This survey gives an overview of computational approaches to modeling lexical and grammatical aspect along with intuitive explanations of the necessary linguistic concepts and terminology. In particular, we describe the concepts of stativity, telicity, habituality, perfective and imperfective, as well as influential inventories of eventuality and situation types. We argue that because aspect is a crucial component of semantics, especially when it comes to reporting the temporal structure of situations in a precise way, future NLP approaches need to be able to handle and evaluate it systematically in order to achieve human-level language understanding.Comment: Accepted at EACL 2023, camera ready versio

    Verb similarity: comparing corpus and psycholinguistic data

    Get PDF
    Similarity, which plays a key role in fields like cognitive science, psycholinguistics and natural language processing, is a broad and multifaceted concept. In this work we analyse how two approaches that belong to different perspectives, the corpus view and the psycholinguistic view, articulate similarity between verb senses in Spanish. Specifically, we compare the similarity between verb senses based on their argument structure, which is captured through semantic roles, with their similarity defined by word associations. We address the question of whether verb argument structure, which reflects the expression of the events, and word associations, which are related to the speakers' organization of the mental lexicon, shape similarity between verbs in a congruent manner, a topic which has not been explored previously. While we find significant correlations between verb sense similarities obtained from these two approaches, our findings also highlight some discrepancies between them and the importance of the degree of abstraction of the corpus annotation and psycholinguistic representations.La similitud, que desempeña un papel clave en campos como la ciencia cognitiva, la psicolingüística y el procesamiento del lenguaje natural, es un concepto amplio y multifacético. En este trabajo analizamos cómo dos enfoques que pertenecen a diferentes perspectivas, la visión del corpus y la visión psicolingüística, articulan la semejanza entre los sentidos verbales en español. Específicamente, comparamos la similitud entre los sentidos verbales basados en su estructura argumental, que se capta a través de roles semánticos, con su similitud definida por las asociaciones de palabras. Abordamos la cuestión de si la estructura del argumento verbal, que refleja la expresión de los acontecimientos, y las asociaciones de palabras, que están relacionadas con la organización de los hablantes del léxico mental, forman similitud entre los verbos de una manera congruente, un tema que no ha sido explorado previamente. Mientras que encontramos correlaciones significativas entre las similitudes de los sentidos verbales obtenidas de estos dos enfoques, nuestros hallazgos también resaltan algunas discrepancias entre ellos y la importancia del grado de abstracción de la anotación del corpus y las representaciones psicolingüísticas.La similitud, que exerceix un paper clau en camps com la ciència cognitiva, la psicolingüística i el processament del llenguatge natural, és un concepte ampli i multifacètic. En aquest treball analitzem com dos enfocaments que pertanyen a diferents perspectives, la visió del corpus i la visió psicolingüística, articulen la semblança entre els sentits verbals en espanyol. Específicament, comparem la similitud entre els sentits verbals basats en la seva estructura argumental, que es capta a través de rols semàntics, amb la seva similitud definida per les associacions de paraules. Abordem la qüestió de si l'estructura de l'argument verbal, que reflecteix l'expressió dels esdeveniments, i les associacions de paraules, que estan relacionades amb l'organització dels parlants del lèxic mental, formen similitud entre els verbs d'una manera congruent, un tema que no ha estat explorat prèviament. Mentre que trobem correlacions significatives entre les similituds dels sentits verbals obtingudes d'aquests dos enfocaments, les nostres troballes també ressalten algunes discrepàncies entre ells i la importància del grau d'abstracció de l'anotació del corpus i les representacions psicolingüístiques

    Verb similarity: Comparing corpus and psycholinguistic data

    Get PDF
    Similarity, which plays a key role in fields like cognitive science, psycholinguistics and natural language processing, is a broad and multifaceted concept. In this work we analyse how two approaches that belong to different perspectives, the corpus view and the psycholinguistic view, articulate similarity between verb senses in Spanish. Specifically, we compare the similarity between verb senses based on their argument structure, which is captured through semantic roles, with their similarity defined by word associations. We address the question of whether verb argument structure, which reflects the expression of the events, and word associations, which are related to the speakers' organization of the mental lexicon, shape similarity between verbs in a congruent manner, a topic which has not been explored previously. While we find significant correlations between verb sense similarities obtained from these two approaches, our findings also highlight some discrepancies between them and the importance of the degree of abstraction of the corpus annotation and psycholinguistic representations

    Multiword expressions at length and in depth

    Get PDF
    The annual workshop on multiword expressions takes place since 2001 in conjunction with major computational linguistics conferences and attracts the attention of an ever-growing community working on a variety of languages, linguistic phenomena and related computational processing issues. MWE 2017 took place in Valencia, Spain, and represented a vibrant panorama of the current research landscape on the computational treatment of multiword expressions, featuring many high-quality submissions. Furthermore, MWE 2017 included the first shared task on multilingual identification of verbal multiword expressions. The shared task, with extended communal work, has developed important multilingual resources and mobilised several research groups in computational linguistics worldwide. This book contains extended versions of selected papers from the workshop. Authors worked hard to include detailed explanations, broader and deeper analyses, and new exciting results, which were thoroughly reviewed by an internationally renowned committee. We hope that this distinctly joint effort will provide a meaningful and useful snapshot of the multilingual state of the art in multiword expressions modelling and processing, and will be a point point of reference for future work

    CLiFF Notes: Research in the Language Information and Computation Laboratory of The University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLIFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science, Psychology, and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. With 48 individual contributors and six projects represented, this is the largest LINC Lab collection to date, and the most diverse

    CLiFF Notes: Research in the Language, Information and Computation Laboratory of the University of Pennsylvania

    Get PDF
    One concern of the Computer Graphics Research Lab is in simulating human task behavior and understanding why the visualization of the appearance, capabilities and performance of humans is so challenging. Our research has produced a system, called Jack, for the definition, manipulation, animation and human factors analysis of simulated human figures. Jack permits the envisionment of human motion by interactive specification and simultaneous execution of multiple constraints, and is sensitive to such issues as body shape and size, linkage, and plausible motions. Enhanced control is provided by natural behaviors such as looking, reaching, balancing, lifting, stepping, walking, grasping, and so on. Although intended for highly interactive applications, Jack is a foundation for other research. The very ubiquitousness of other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the most common object around us, and yet the most structurally complex. Their everyday movements are amazingly fluid, yet demanding to reproduce, with actions driven not just mechanically by muscles and bones but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the actions and behaviors of others without consciously struggling with the processes of perception, recognition, and language. Present technology lets us approach human appearance and motion through computer graphics modeling and three dimensional animation, but there is considerable distance to go before purely synthesized figures trick our senses. We seek to build computational models of human like figures which manifest animacy and convincing behavior. Towards this end, we: Create an interactive computer graphics human model; Endow it with reasonable biomechanical properties; Provide it with human like behaviors; Use this simulated figure as an agent to effect changes in its world; Describe and guide its tasks through natural language instructions. There are presently no perfect solutions to any of these problems; ultimately, however, we should be able to give our surrogate human directions that, in conjunction with suitable symbolic reasoning processes, make it appear to behave in a natural, appropriate, and intelligent fashion. Compromises will be essential, due to limits in computation, throughput of display hardware, and demands of real-time interaction, but our algorithms aim to balance the physical device constraints with carefully crafted models, general solutions, and thoughtful organization. The Jack software is built on Silicon Graphics Iris 4D workstations because those systems have 3-D graphics features that greatly aid the process of interacting with highly articulated figures such as the human body. Of course, graphics capabilities themselves do not make a usable system. Our research has therefore focused on software to make the manipulation of a simulated human figure easy for a rather specific user population: human factors design engineers or ergonomics analysts involved in visualizing and assessing human motor performance, fit, reach, view, and other physical tasks in a workplace environment. The software also happens to be quite usable by others, including graduate students and animators. The point, however, is that program design has tried to take into account a wide variety of physical problem oriented tasks, rather than just offer a computer graphics and animation tool for the already computer sophisticated or skilled animator. As an alternative to interactive specification, a simulation system allows a convenient temporal and spatial parallel programming language for behaviors. The Graphics Lab is working with the Natural Language Group to explore the possibility of using natural language instructions, such as those found in assembly or maintenance manuals, to drive the behavior of our animated human agents. (See the CLiFF note entry for the AnimNL group for details.) Even though Jack is under continual development, it has nonetheless already proved to be a substantial computational tool in analyzing human abilities in physical workplaces. It is being applied to actual problems involving space vehicle inhabitants, helicopter pilots, maintenance technicians, foot soldiers, and tractor drivers. This broad range of applications is precisely the target we intended to reach. The general capabilities embedded in Jack attempt to mirror certain aspects of human performance, rather than the specific requirements of the corresponding workplace. We view the Jack system as the basis of a virtual animated agent that can carry out tasks and instructions in a simulated 3D environment. While we have not yet fooled anyone into believing that the Jack figure is real , its behaviors are becoming more reasonable and its repertoire of actions more extensive. When interactive control becomes more labor intensive than natural language instructional control, we will have reached a significant milestone toward an intelligent agent

    Research in the Language, Information and Computation Laboratory of the University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLiFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. Naturally, this introduction cannot spell out all the connections between these abstracts; we invite you to explore them on your own. In fact, with this issue it’s easier than ever to do so: this document is accessible on the “information superhighway”. Just call up http://www.cis.upenn.edu/~cliff-group/94/cliffnotes.html In addition, you can find many of the papers referenced in the CLiFF Notes on the net. Most can be obtained by following links from the authors’ abstracts in the web version of this report. The abstracts describe the researchers’ many areas of investigation, explain their shared concerns, and present some interesting work in Cognitive Science. We hope its new online format makes the CLiFF Notes a more useful and interesting guide to Computational Linguistics activity at Penn
    corecore