764 research outputs found

    Retinal Vascular Analysis in a Fully Automated Method for the Segmentation of DRT Edemas Using OCT Images

    Get PDF
    [Abstract] Optical Coherence Tomography (OCT) is a well-established medical imaging technique that allows a complete analysis and evaluation of the main retinal structures and their histopathology properties. Diabetic Macular Edema (DME) implies the accumulation of intraretinal fluid within the macular region. Diffuse Retinal Thickening (DRT) edemas are considered a relevant case of DME disease, where the pathological regions are characterized by a “sponge-like” appearance and a reduced intraretinal reflectivity, being visible in OCT images. Additionally, the presence of other structures may alter the OCT image characteristics, confusing the pathological identification process. This is the case of the retinal vessels over all the eye fundus, whose presence produce shadow projections over the retinal layers that may hide the “sponge-like” appearance of the DRT edemas. Thus, in this paper, we present a proposal for the automatic extraction of DRT edemas, also using as reference the information provided by the automatic identifications of the retinal vessels in the OCT images. To do that, firstly, the system delimits three retinal regions of interest. These retinal regions facilitate the posterior identification of the vessel structures and the segmentation of the DRT regions. For the identification of the vessels structures, the method combined the localization of the upper bright vascular profiles with the presence of their corresponding lower dark vascular shadows. Finally, a learning strategy is implemented for the segmentation of the DRT edemas. Satisfactory results were obtained, reaching values of 0.8346 and 0.9051 of Jaccard index and Dice coefficient, respectively, for the extraction of the existing DRT edemas.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-047This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047

    Automatic Identification and Intuitive Map Representation of the Epiretinal Membrane Presence in 3D OCT Volumes

    Get PDF
    [Abstract] Optical Coherence Tomography (OCT) is a medical image modality providing high-resolution cross-sectional visualizations of the retinal tissues without any invasive procedure, commonly used in the analysis of retinal diseases such as diabetic retinopathy or retinal detachment. Early identification of the epiretinal membrane (ERM) facilitates ERM surgical removal operations. Moreover, presence of the ERM is linked to other retinal pathologies, such as macular edemas, being among the main causes of vision loss. In this work, we propose an automatic method for the characterization and visualization of the ERM’s presence using 3D OCT volumes. A set of 452 features is refined using the Spatial Uniform ReliefF (SURF) selection strategy to identify the most relevant ones. Afterwards, a set of representative classifiers is trained, selecting the most proficient model, generating a 2D reconstruction of the ERM’s presence. Finally, a post-processing stage using a set of morphological operators is performed to improve the quality of the generated maps. To verify the proposed methodology, we used 20 3D OCT volumes, both with and without the ERM’s presence, totalling 2428 OCT images manually labeled by a specialist. The most optimal classifier in the training stage achieved a mean accuracy of 91.9%. Regarding the post-processing stage, mean specificity values of 91.9% and 99.0% were obtained from volumes with and without the ERM’s presence, respectively.This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research projects and by the Ministerio de Ciencia, Innovación y Universidades, Government of Spain through the DPI2015-69948-R and RTI2018-095894-B-I00 research projects. Moreover, this work has received financial support from the European Union (European Regional Development Fund—ERDF) and the Xunta de Galicia, Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431C 2016-04

    Automatic macular edema identification and characterization using OCT images

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Samagaio, G., Estévez, A., Moura, J. de, Novo, J., Fernández, M. I., & Ortega, M. (2018). “Automatic macular edema identification and characterization using OCT images” has been accepted for publication in Computer Methods and Programs in Biomedicine, 163, 47–63. The Version of Record is available online at: https://doi.org/10.1016/j.cmpb.2018.05.033.[Abstract]: Background and objective: The detection and characterization of the intraretinal fluid accumulation constitutes a crucial ophthalmological issue as it provides useful information for the identification and diagnosis of the different types of Macular Edema (ME). These types are clinically defined, according to the clinical guidelines, as: Serous Retinal Detachment (SRD), Diffuse Retinal Thickening (DRT) and Cystoid Macular Edema (CME). Their accurate identification and characterization facilitate the diagnostic process, determining the disease severity and, therefore, allowing the clinicians to achieve more precise analysis and suitable treatments. Methods: This paper proposes a new fully automatic system for the identification and characterization of the three types of ME using Optical Coherence Tomography (OCT) images. In the case of SRD and CME edemas, multilevel image thresholding approaches were designed and combined with the application of ad-hoc clinical restrictions. The case of DRT edemas, given their complexity and fuzzy regional appearance, was approached by a learning strategy that exploits intensity, texture and clinical-based information to identify their presence. Results: The system provided satisfactory results with F-Measures of 87.54% and 91.99% for the DRT and CME detections, respectively. In the case of SRD edemas, the system correctly detected all the cases that were included in the designed dataset. Conclusions: The proposed methodology offered an accurate performance for the individual identification and characterization of the three different types of ME in OCT images. In fact, the method is capable to handle the ME analysis even in cases of significant severity with the simultaneous existence of the three ME types that appear merged inside the retinal layers.This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    The Role of Medical Image Modalities and AI in the Early Detection, Diagnosis and Grading of Retinal Diseases: A Survey.

    Get PDF
    Traditional dilated ophthalmoscopy can reveal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal tear, epiretinal membrane, macular hole, retinal detachment, retinitis pigmentosa, retinal vein occlusion (RVO), and retinal artery occlusion (RAO). Among these diseases, AMD and DR are the major causes of progressive vision loss, while the latter is recognized as a world-wide epidemic. Advances in retinal imaging have improved the diagnosis and management of DR and AMD. In this review article, we focus on the variable imaging modalities for accurate diagnosis, early detection, and staging of both AMD and DR. In addition, the role of artificial intelligence (AI) in providing automated detection, diagnosis, and staging of these diseases will be surveyed. Furthermore, current works are summarized and discussed. Finally, projected future trends are outlined. The work done on this survey indicates the effective role of AI in the early detection, diagnosis, and staging of DR and/or AMD. In the future, more AI solutions will be presented that hold promise for clinical applications

    Automatic Identification and Characterization of the Epiretinal Membrane in OCT Images

    Get PDF
    [Abstract] Optical coherence tomography (OCT) is a medical image modality that is used to capture, non-invasively, high-resolution cross-sectional images of the retinal tissue. These images constitute a suitable scenario for the diagnosis of relevant eye diseases like the vitreomacular traction or the diabetic retinopathy. The identification of the epiretinal membrane (ERM) is a relevant issue as its presence constitutes a symptom of diseases like the macular edema, deteriorating the vision quality of the patients. This work presents an automatic methodology for the identification of the ERM presence in OCT scans. Initially, a complete and heterogeneous set of features was defined to capture the properties of the ERM in the OCT scans. Selected features went through a feature selection process to further improve the method efficiency. Additionally, representative classifiers were trained and tested to measure the suitability of the proposed approach. The method was tested with a dataset of 285 OCT scans labeled by a specialist. In particular, 3,600 samples were equally extracted from the dataset, representing zones with and without ERM presence. Different experiments were conducted to reach the most suitable approach. Finally, selected classifiers were trained and compared using different metrics, providing in the best configuration an accuracy of 89.35%.Ministerio de Economía, Industria y Competitividad, Gobierno de España (DPI2015-69948-R); Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (ED431C 2016-047, ED431G/01); Instituto de Salud Carlos III (ISCIII) (DTS18/00136).Xunta de Galicia; ED431C 2016-047Xunta de Galicia; ED431G/0

    Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images

    Get PDF
    [Abstract] Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS® from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way.Xunta de Galicia; ED431G 2019/01This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia, Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formación de profesorado universitario (FPU), grant ref. FPU18/02271; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%)

    Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images

    Get PDF
    Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS(R) from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way
    corecore