518 research outputs found

    Multi-label Ferns for Efficient Recognition of Musical Instruments in Recordings

    Full text link
    In this paper we introduce multi-label ferns, and apply this technique for automatic classification of musical instruments in audio recordings. We compare the performance of our proposed method to a set of binary random ferns, using jazz recordings as input data. Our main result is obtaining much faster classification and higher F-score. We also achieve substantial reduction of the model size

    Visual analysis for drum sequence transcription

    Get PDF
    A system is presented for analysing drum performance video sequences. A novel ellipse detection algorithm is introduced that automatically locates drum tops. This algorithm fits ellipses to edge clusters, and ranks them according to various fitness criteria. A background/foreground segmentation method is then used to extract the silhouette of the drummer and drum sticks. Coupled with a motion intensity feature, this allows for the detection of ‘hits’ in each of the extracted regions. In order to obtain a transcription of the performance, each of these regions is automatically labeled with the corresponding instrument class. A partial audio transcription and color cues are used to measure the compatibility between a region and its label, the Kuhn-Munkres algorithm is then employed to find the optimal labeling. Experimental results demonstrate the ability of visual analysis to enhance the performance of an audio drum transcription system

    Evaluating Ground Truth for ADRess as a Preprocess for Automatic Musical Instrument Identification

    Get PDF
    Most research in musical instrument identification has focused on labeling isolated samples or solo phrases. A robust instrument identification system capable of dealing with polytimbral recordings of instruments remains a necessity in music information retrieval. Experiments are described which evaluate the ground truth of ADRess as a sound source separation technique used as a preprocess to automatic musical instrument identification. The ground truth experiments are based on a number of basic acoustic features, while using a Gaussian Mixture Model as the classification algorithm. Using all 44 acoustic feature dimensions, successful identification rates are achieved

    Augmentation Methods on Monophonic Audio for Instrument Classification in Polyphonic Music

    Full text link
    Instrument classification is one of the fields in Music Information Retrieval (MIR) that has attracted a lot of research interest. However, the majority of that is dealing with monophonic music, while efforts on polyphonic material mainly focus on predominant instrument recognition. In this paper, we propose an approach for instrument classification in polyphonic music from purely monophonic data, that involves performing data augmentation by mixing different audio segments. A variety of data augmentation techniques focusing on different sonic aspects, such as overlaying audio segments of the same genre, as well as pitch and tempo-based synchronization, are explored. We utilize Convolutional Neural Networks for the classification task, comparing shallow to deep network architectures. We further investigate the usage of a combination of the above classifiers, each trained on a single augmented dataset. An ensemble of VGG-like classifiers, trained on non-augmented, pitch-synchronized, tempo-synchronized and genre-similar excerpts, respectively, yields the best results, achieving slightly above 80% in terms of label ranking average precision (LRAP) in the IRMAS test set.ruments in over 2300 testing tracks

    Automatic musical instrument recognition for multimedia indexing

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia InformáticaThe subject of automatic indexing of multimedia has been a target of numerous discussion and study. This interest is due to the exponential growth of multimedia content and the subsequent need to create methods that automatically catalogue this data. To fulfil this idea, several projects and areas of study have emerged. The most relevant of these are the MPEG-7 standard, which defines a standardized system for the representation and automatic extraction of information present in the content, and Music Information Retrieval (MIR), which gathers several paradigms and areas of study relating to music. The main approach to this indexing problem relies on analysing data to obtain and identify descriptors that can help define what we intend to recognize (as, for instance,musical instruments, voice, facial expressions, and so on), this then provides us with information we can use to index the data. This dissertation will focus on audio indexing in music, specifically regarding the recognition of musical instruments from recorded musical notes. Moreover, the developed system and techniques will also be tested for the recognition of ambient sounds (such as the sound of running water, cars driving by, and so on). Our approach will use non-negative matrix factorization to extract features from various types of sounds, these will then be used to train a classification algorithm that will be then capable of identifying new sounds

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes
    corecore