11,214 research outputs found

    An Efficient Vein Pattern-based Recognition System

    Full text link
    This paper presents an efficient human recognition system based on vein pattern from the palma dorsa. A new absorption based technique has been proposed to collect good quality images with the help of a low cost camera and light source. The system automatically detects the region of interest from the image and does the necessary preprocessing to extract features. A Euclidean Distance based matching technique has been used for making the decision. It has been tested on a data set of 1750 image samples collected from 341 individuals. The accuracy of the verification system is found to be 99.26% with false rejection rate (FRR) of 0.03%.Comment: IEEE Publication format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 8 No. 1, April 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Face detection and clustering for video indexing applications

    Get PDF
    This paper describes a method for automatically detecting human faces in generic video sequences. We employ an iterative algorithm in order to give a confidence measure for the presence or absence of faces within video shots. Skin colour filtering is carried out on a selected number of frames per video shot, followed by the application of shape and size heuristics. Finally, the remaining candidate regions are normalized and projected into an eigenspace, the reconstruction error being the measure of confidence for presence/absence of face. Following this, the confidence score for the entire video shot is calculated. In order to cluster extracted faces into a set of face classes, we employ an incremental procedure using a PCA-based dissimilarity measure in con-junction with spatio-temporal correlation. Experiments were carried out on a representative broadcast news test corpus

    Deep Learning Face Attributes in the Wild

    Full text link
    Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    Unconstrained Face Detection and Open-Set Face Recognition Challenge

    Full text link
    Face detection and recognition benchmarks have shifted toward more difficult environments. The challenge presented in this paper addresses the next step in the direction of automatic detection and identification of people from outdoor surveillance cameras. While face detection has shown remarkable success in images collected from the web, surveillance cameras include more diverse occlusions, poses, weather conditions and image blur. Although face verification or closed-set face identification have surpassed human capabilities on some datasets, open-set identification is much more complex as it needs to reject both unknown identities and false accepts from the face detector. We show that unconstrained face detection can approach high detection rates albeit with moderate false accept rates. By contrast, open-set face recognition is currently weak and requires much more attention.Comment: This is an ERRATA version of the paper originally presented at the International Joint Conference on Biometrics. Due to a bug in our evaluation code, the results of the participants changed. The final conclusion, however, is still the sam
    • 

    corecore