48,832 research outputs found

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates ā€œrawā€ treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    Treebank-based acquisition of LFG resources for Chinese

    Get PDF
    This paper presents a method to automatically acquire wide-coverage, robust, probabilistic Lexical-Functional Grammar resources for Chinese from the Penn Chinese Treebank (CTB). Our starting point is the earlier, proofof- concept work of (Burke et al., 2004) on automatic f-structure annotation, LFG grammar acquisition and parsing for Chinese using the CTB version 2 (CTB2). We substantially extend and improve on this earlier research as regards coverage, robustness, quality and fine-grainedness of the resulting LFG resources. We achieve this through (i) improved LFG analyses for a number of core Chinese phenomena; (ii) a new automatic f-structure annotation architecture which involves an intermediate dependency representation; (iii) scaling the approach from 4.1K trees in CTB2 to 18.8K trees in CTB version 5.1 (CTB5.1) and (iv) developing a novel treebank-based approach to recovering non-local dependencies (NLDs) for Chinese parser output. Against a new 200-sentence good standard of manually constructed f-structures, the method achieves 96.00% f-score for f-structures automatically generated for the original CTB trees and 80.01%for NLD-recovered f-structures generated for the trees output by Bikelā€™s parser

    Can Subcategorisation Probabilities Help a Statistical Parser?

    Full text link
    Research into the automatic acquisition of lexical information from corpora is starting to produce large-scale computational lexicons containing data on the relative frequencies of subcategorisation alternatives for individual verbal predicates. However, the empirical question of whether this type of frequency information can in practice improve the accuracy of a statistical parser has not yet been answered. In this paper we describe an experiment with a wide-coverage statistical grammar and parser for English and subcategorisation frequencies acquired from ten million words of text which shows that this information can significantly improve parse accuracy.Comment: 9 pages, uses colacl.st

    Automatic treebank-based acquisition of Arabic LFG dependency structures

    Get PDF
    A number of papers have reported on methods for the automatic acquisition of large-scale, probabilistic LFG-based grammatical resources from treebanks for English (Cahill and al., 2002), (Cahill and al., 2004), German (Cahill and al., 2003), Chinese (Burke, 2004), (Guo and al., 2007), Spanish (Oā€™Donovan, 2004), (Chrupala and van Genabith, 2006) and French (Schluter and van Genabith, 2008). Here, we extend the LFG grammar acquisition approach to Arabic and the Penn Arabic Treebank (ATB) (Maamouri and Bies, 2004), adapting and extending the methodology of (Cahill and al., 2004) originally developed for English. Arabic is challenging because of its morphological richness and syntactic complexity. Currently 98% of ATB trees (without FRAG and X) produce a covering and connected f-structure. We conduct a qualitative evaluation of our annotation against a gold standard and achieve an f-score of 95%

    Automatic acquisition of LFG resources for German - as good as it gets

    Get PDF
    We present data-driven methods for the acquisition of LFG resources from two German treebanks. We discuss problems specific to semi-free word order languages as well as problems arising fromthe data structures determined by the design of the different treebanks. We compare two ways of encoding semi-free word order, as done in the two German treebanks, and argue that the design of the TiGer treebank is more adequate for the acquisition of LFG resources. Furthermore, we describe an architecture for LFG grammar acquisition for German, based on the two German treebanks, and compare our results with a hand-crafted German LFG grammar

    DCU 250 Arabic dependency bank: an LFG gold standard resource for the Arabic Penn treebank

    Get PDF
    This paper describes the construction of a dependency bank gold standard for Arabic, DCU 250 Arabic Dependency Bank (DCU 250), based on the Arabic Penn Treebank Corpus (ATB) (Bies and Maamouri, 2003; Maamouri and Bies, 2004) within the theoretical framework of Lexical Functional Grammar (LFG). For parsing and automatically extracting grammatical and lexical resources from treebanks, it is necessary to evaluate against established gold standard resources. Gold standards for various languages have been developed, but to our knowledge, such a resource has not yet been constructed for Arabic. The construction of the DCU 250 marks the first step towards the creation of an automatic LFG f-structure annotation algorithm for the ATB, and for the extraction of Arabic grammatical and lexical resources

    Treebank-based acquisition of a Chinese lexical-functional grammar

    Get PDF
    Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is knowledge-intensive, time-consuming and (often prohibitively) expensive. A number of researchers have recently presented methods to automatically acquire wide-coverage, probabilistic constraint-based grammatical resources from treebanks (Cahill et al., 2002, Cahill et al., 2003; Cahill et al., 2004; Miyao et al., 2003; Miyao et al., 2004; Hockenmaier and Steedman, 2002; Hockenmaier, 2003), addressing the knowledge acquisition bottleneck in constraint-based grammar development. Research to date has concentrated on English and German. In this paper we report on an experiment to induce wide-coverage, probabilistic LFG grammatical and lexical resources for Chinese from the Penn Chinese Treebank (CTB) (Xue et al., 2002) based on an automatic f-structure annotation algorithm. Currently 96.751% of the CTB trees receive a single, covering and connected f-structure, 0.112% do not receive an f-structure due to feature clashes, while 3.137% are associated with multiple f-structure fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical entries with 20 distinct subcategorisation frame types. Of these 3436 are verbal entries with a total of 11 different frame types. We extract a number of PCFG-based LFG approximations. Currently our best automatically induced grammars achieve an f-score of 81.57% against the trees in unseen articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against the dependencies derived from the f-structures automatically generated for the original trees in 301-325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the dependencies derived from the manually annotated gold-standard f-structures for 50 trees randomly selected from articles 301-325

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing ā€œdeepā€ hand-crafted wide-coverage with ā€œshallowā€ treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Treebank-based acquisition of LFG parsing resources for French

    Get PDF
    Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in automatically obtained wide-coverage grammars from treebanks for natural language processing. In particular, recent years have seen the growth in interest in automatically obtained deep resources that can represent information absent from simple CFG-type structured treebanks and which are considered to produce more language-neutral linguistic representations, such as dependency syntactic trees. As is often the case in early pioneering work on natural language processing, English has provided the focus of first efforts towards acquiring deep-grammar resources, followed by successful treatments of, for example, German, Japanese, Chinese and Spanish. However, no comparable large-scale automatically acquired deep-grammar resources have been obtained for French to date. The goal of this paper is to present the application of treebank-based language acquisition to the case of French. We show that with modest changes to the established parsing architectures, encouraging results can be obtained for French, with a best dependency structure f-score of 86.73%
    • ā€¦
    corecore