24,388 research outputs found

    Automatic Gradient Boosting

    Get PDF

    Gradient boosting in automatic machine learning: feature selection and hyperparameter optimization

    Get PDF
    Das Ziel des automatischen maschinellen Lernens (AutoML) ist es, alle Aspekte der Modellwahl in prädiktiver Modellierung zu automatisieren. Diese Arbeit beschäftigt sich mit Gradienten Boosting im Kontext von AutoML mit einem Fokus auf Gradient Tree Boosting und komponentenweisem Boosting. Beide Techniken haben eine gemeinsame Methodik, aber ihre Zielsetzung ist unterschiedlich. Während Gradient Tree Boosting im maschinellen Lernen als leistungsfähiger Vorhersagealgorithmus weit verbreitet ist, wurde komponentenweises Boosting im Rahmen der Modellierung hochdimensionaler Daten entwickelt. Erweiterungen des komponentenweisen Boostings auf multidimensionale Vorhersagefunktionen werden in dieser Arbeit ebenfalls untersucht. Die Herausforderung der Hyperparameteroptimierung wird mit Fokus auf Bayesianische Optimierung und effiziente Stopping-Strategien diskutiert. Ein groß angelegter Benchmark über Hyperparameter verschiedener Lernalgorithmen, zeigt den kritischen Einfluss von Hyperparameter Konfigurationen auf die Qualität der Modelle. Diese Daten können als Grundlage für neue AutoML- und Meta-Lernansätze verwendet werden. Darüber hinaus werden fortgeschrittene Strategien zur Variablenselektion zusammengefasst und eine neue Methode auf Basis von permutierten Variablen vorgestellt. Schließlich wird ein AutoML-Ansatz vorgeschlagen, der auf den Ergebnissen und Best Practices für die Variablenselektion und Hyperparameteroptimierung basiert. Ziel ist es AutoML zu vereinfachen und zu stabilisieren sowie eine hohe Vorhersagegenauigkeit zu gewährleisten. Dieser Ansatz wird mit AutoML-Methoden, die wesentlich komplexere Suchräume und Ensembling Techniken besitzen, verglichen. Vier Softwarepakete für die statistische Programmiersprache R sind Teil dieser Arbeit, die neu entwickelt oder erweitert wurden: mlrMBO: Ein generisches Paket für die Bayesianische Optimierung; autoxgboost: Ein AutoML System, das sich vollständig auf Gradient Tree Boosting fokusiert; compboost: Ein modulares, in C++ geschriebenes Framework für komponentenweises Boosting; gamboostLSS: Ein Framework für komponentenweises Boosting additiver Modelle für Location, Scale und Shape.The goal of automatic machine learning (AutoML) is to automate all aspects of model selection in (supervised) predictive modeling. This thesis deals with gradient boosting techniques in the context of AutoML with a focus on gradient tree boosting and component-wise gradient boosting. Both techniques have a common methodology, but their goal is quite different. While gradient tree boosting is widely used in machine learning as a powerful prediction algorithm, component-wise gradient boosting strength is in feature selection and modeling of high-dimensional data. Extensions of component-wise gradient boosting to multidimensional prediction functions are considered as well. Focusing on Bayesian optimization and efficient early stopping strategies the challenge of hyperparameter optimization for these algorithms is discussed. Difficulty in the optimization of these algorithms is shown by a large scale random search on hyperparameters for machine learning algorithms, that can build the foundation of new AutoML and metalearning approaches. Furthermore, advanced feature selection strategies are summarized and a new method based on shadow features is introduced. Finally, an AutoML approach based on the results and best practices for feature selection and hyperparameter optimization is proposed, with the goal of simplifying and stabilizing AutoML while maintaining high prediction accuracy. This is compared to AutoML approaches using much more complex search spaces and ensembling techniques. Four software packages for the statistical programming language R have been newly developed or extended as a part of this thesis: mlrMBO: A general framework for Bayesian optimization; autoxgboost: An automatic machine learning framework that heavily utilizes gradient tree boosting; compboost: A modular framework for component-wise boosting written in C++; gamboostLSS: A framework for component-wise boosting for generalized additive models for location scale and shape

    Automatic Complaints Categorization Using Random Forest and Gradient Boosting

    Get PDF
    Capturing and responding to complaints from the public is an important effort to develop a good city/country. This project aims to utilize Data Mining to automatize complaints categorization. More than 35,000 complaints in Bangalore city, India, were retrieved from the “I Change My City” website (https://www.ichangemycity.com). The vector space of the complaints was created using Term Frequency–Inverse Document Frequency (TF-IDF) and the multi-class text classifications were done using Random Forest (RF) and Gradient Boosting (GB). Results showed that both RF and GB have similar performance with an accuracy of 73% on the 10-classes multi-class classification task. Result also showed that the model is highly dependent on the word usage in the complaint's description. Future research directions to increase task performance are also suggested

    Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data

    Get PDF
    Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilizes raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78-0.81) and Average Precision (AP) of 0.68 (0.66-0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74-0.77) and AP of 0.62 (0.60-0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalized therapeutic plans
    corecore