95,468 research outputs found

    Specification-driven test generation for model transformations

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-30476-7_3Proceedings of 5th International Conference, ICMT 2012, Prague, Czech Republic, May 28-29, 2012Testing model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches to the generation of input models ensure a certain level of source meta-model coverage, whereas the oracle functions are frequently defined using query or graph languages. Both tasks are usually performed independently regardless their common purpose, and sometimes there is a gap between the properties exhibited by the generated input models and those demanded to the transformations (as given by the oracles). Recently, we proposed a formal specification language for the declarative formulation of transformation properties (invariants, pre- and postconditions) from which we generated partial oracle functions that facilitate testing of the transformations. Here we extend the usage of our specification language for the automated generation of input test models by constraint solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the interesting properties of the transformation. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions.Work funded by the Spanish Ministry of Economy and Competitivity (TIN2011-24139) and by the R&D programme of Madrid Region (S2009/TIC-1650

    Specification-driven model transformation testing

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-013-0369-xTesting model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches for the generation of input models ensure a certain coverage of the source meta-model or the transformation implementation code, whereas oracle functions are frequently defined using query or graph languages. However, these two tasks are usually performed independently regardless of their common purpose, and sometimes, there is a gap between the properties exhibited by the generated input models and those considered by the transformations. Recently, we proposed a formal specification language for the declarative formulation of transformation properties (by means of invariants, pre-, and postconditions) from which we generated partial oracle functions used for transformation testing. Here, we extend the usage of our specification language for the automated generation of input test models by SAT solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the transformation requirements. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions. A set of experiments is presented, aimed at measuring the efficacy of our technique.We thank the referees for their useful comments. This work has been sponsored by the Spanish Ministry of Science and Innovation with project “Go-Lite” (TIN2011-24139), by the R&D program of the Community of Madrid with project “e- Madrid” (S2009/TIC-1650), and by the German Research Foundation (DFG) within the Reinhart Koselleck project (DR 287/23-1)

    Automatic Model Generation Strategies for Model Transformation Testing

    Get PDF
    International audienceTesting model transformations requires input models which are graphs of inter-connected objects that must conform to a meta-model and meta-constraints from heterogeneous sources such as well-formedness rules, transformation pre-conditions, and test strategies. Manually specifying such models is tedious since models must simultaneously conform to several meta-constraints. We propose automatic model generation via constraint satisfaction using our tool Cartier for model transformation testing. Due to the virtually infinite number of models in the input domain we compare strategies based on input domain partitioning to guide model generation. We qualify the effectiveness of these strategies by performing mutation analysis on the transformation using generated sets of models. The test sets obtained using partitioning strategies gives mutation scores of up to 87\% vs. 72\% in the case of unguided/random generation. These scores are based on analysis of 360 automatically generated test models for the representative transformation of UML class diagram models to RDBMS models

    Automated inference of likely metamorphic relations for model transformations

    Get PDF
    Model transformations play a cornerstone role in Model-Driven Engineering (MDE) as they provide the essential mechanisms for manipulating and transforming models. Checking whether the output of a model transformation is correct is a manual and errorprone task, referred to as the oracle problem. Metamorphic testing alleviates the oracle problem by exploiting the relations among di erent inputs and outputs of the program under test, so-called metamorphic relations (MRs). One of the main challenges in metamorphic testing is the automated inference of likely MRs. This paper proposes an approach to automatically infer likely MRs for ATL model transformations, where the tester does not need to have any knowledge of the transformation. The inferred MRs aim at detecting faults in model transformations in three application scenarios, namely regression testing, incremental transformations and migrations among transformation languages. In the experiments performed, the inferred likely MRs have proved to be quite accurate, with a precision of 96.4% from a total of 4101 true positives out of 4254 MRs inferred. Furthermore, they have been useful for identifying mutants in regression testing scenarios, with a mutation score of 93.3%. Finally, our approach can be used in conjunction with current approaches for the automatic generation of test cases.Comisión Interministerial de Ciencia y Tecnología TIN2015-70560-RJunta de Andalucía P12-TIC-186

    Static Analysis of Model Transformations for Effective Test Generation

    Get PDF
    International audienceModel transformations are an integral part of several computing systems that manipulate interconnected graphs of objects called models in an input domain specified by a metamodel and a set of invariants. Test models are used to look for faults in a transformation. A test model contains a specific set of objects, their interconnections and values for their attributes. Can we automatically generate an effective set of test models using knowledge from the transformation? We present a white-box testing approach that uses static analysis to guide the automatic generation of test inputs for transformations. Our static analysis uncovers knowledge about how the input model elements are accessed by transformation operations. This information is called the input metamodel footprint due to the transformation. We transform footprint, input metamodel, its invariants, and transformation pre-conditions to a constraint satisfaction problem in Alloy. We solve the problem to generate sets of test models containing traces of the footprint. Are these test models effective? With the help of a case study transformation we evaluate the effectiveness of these test inputs. We use mutation analysis to show that the test models generated from footprints are more effective (97.62% avg. mutation score) in detecting faults than previously developed approaches based on input domain coverage criteria (89.9% avg.) and unguided generation (70.1% avg.)

    PIPS Is not (just) Polyhedral Software Adding GPU Code Generation in PIPS

    No full text
    6 pagesInternational audienceParallel and heterogeneous computing are growing in audience thanks to the increased performance brought by ubiquitous manycores and GPUs. However, available programming models, like OPENCL or CUDA, are far from being straightforward to use. As a consequence, several automated or semi-automated approaches have been proposed to automatically generate hardware-level codes from high-level sequential sources. Polyhedral models are becoming more popular because of their combination of expressiveness, compactness, and accurate abstraction of the data-parallel behaviour of programs. These models provide automatic or semi-automatic parallelization and code transformation capabilities that target such modern parallel architectures. PIPS is a quarter-century old source-to-source transformation framework that initially targeted parallel machines but then evolved to include other targets. PIPS uses abstract interpretation on an integer polyhedral lattice to represent program code, allowing linear relation analysis on integer variables in an interprocedural way. The same representation is used for the dependence test and the convex array region analysis. The polyhedral model is also more classically used to schedule code from linear constraints. In this paper, we illustrate the features of this compiler infrastructure on an hypothetical input code, demonstrating the combination of polyhedral and non polyhedral transformations. PIPS interprocedural polyhedral analyses are used to generate data transfers and are combined with non-polyhedral transformations to achieve efficient CUDA code generation

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page

    Improving NDT with Automatic Test Case Generation

    Get PDF
    The model-driven development defi nes the software development process as a set of iterations to create models and a set of transformations to obtain new models. From this point of view, this paper presents the enhancement of a model- driven approach, called navigational development techniques (NDT), by means of new models and transformations in order to generate test cases. It also states some conclusions from the research work and practical cases in which this approach was used.Ministerio de Ciencia e Innovación TIN2010-20057-C03-02Ministerio de Ciencia e Innovación TIN 2010-12312-

    A Model-Driven approach for functional test case generation

    Get PDF
    Test phase is one of the most critical phases in software engineering life cycle to assure the final system quality. In this context, functional system test cases verify that the system under test fulfills its functional specification. Thus, these test cases are frequently designed from the different scenarios and alternatives depicted in functional requirements. The objective of this paper is to introduce a systematic process based on the Model-Driven paradigm to automate the generation of functional test cases from functional requirements. For this aim, a set of metamodels and transformations and also a specific language domain to use them is presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and conclusions that draw new research lines in the test cases generation context.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-
    corecore