3,260 research outputs found

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    Self-supervised learning for transferable representations

    Get PDF
    Machine learning has undeniably achieved remarkable advances thanks to large labelled datasets and supervised learning. However, this progress is constrained by the labour-intensive annotation process. It is not feasible to generate extensive labelled datasets for every problem we aim to address. Consequently, there has been a notable shift in recent times toward approaches that solely leverage raw data. Among these, self-supervised learning has emerged as a particularly powerful approach, offering scalability to massive datasets and showcasing considerable potential for effective knowledge transfer. This thesis investigates self-supervised representation learning with a strong focus on computer vision applications. We provide a comprehensive survey of self-supervised methods across various modalities, introducing a taxonomy that categorises them into four distinct families while also highlighting practical considerations for real-world implementation. Our focus thenceforth is on the computer vision modality, where we perform a comprehensive benchmark evaluation of state-of-the-art self supervised models against many diverse downstream transfer tasks. Our findings reveal that self-supervised models often outperform supervised learning across a spectrum of tasks, albeit with correlations weakening as tasks transition beyond classification, particularly for datasets with distribution shifts. Digging deeper, we investigate the influence of data augmentation on the transferability of contrastive learners, uncovering a trade-off between spatial and appearance-based invariances that generalise to real-world transformations. This begins to explain the differing empirical performances achieved by self-supervised learners on different downstream tasks, and it showcases the advantages of specialised representations produced with tailored augmentation. Finally, we introduce a novel self-supervised pre-training algorithm for object detection, aligning pre-training with downstream architecture and objectives, leading to reduced localisation errors and improved label efficiency. In conclusion, this thesis contributes a comprehensive understanding of self-supervised representation learning and its role in enabling effective transfer across computer vision tasks

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Guided rewriting and constraint satisfaction for parallel GPU code generation

    Get PDF
    Graphics Processing Units (GPUs) are notoriously hard to optimise for manually due to their scheduling and memory hierarchies. What is needed are good automatic code generators and optimisers for such parallel hardware. Functional approaches such as Accelerate, Futhark and LIFT leverage a high-level algorithmic Intermediate Representation (IR) to expose parallelism and abstract the implementation details away from the user. However, producing efficient code for a given accelerator remains challenging. Existing code generators depend on the user input to choose a subset of hard-coded optimizations or automated exploration of implementation search space. The former suffers from the lack of extensibility, while the latter is too costly due to the size of the search space. A hybrid approach is needed, where a space of valid implementations is built automatically and explored with the aid of human expertise. This thesis presents a solution combining user-guided rewriting and automatically generated constraints to produce high-performance code. The first contribution is an automatic tuning technique to find a balance between performance and memory consumption. Leveraging its functional patterns, the LIFT compiler is empowered to infer tuning constraints and limit the search to valid tuning combinations only. Next, the thesis reframes parallelisation as a constraint satisfaction problem. Parallelisation constraints are extracted automatically from the input expression, and a solver is used to identify valid rewriting. The constraints truncate the search space to valid parallel mappings only by capturing the scheduling restrictions of the GPU in the context of a given program. A synchronisation barrier insertion technique is proposed to prevent data races and improve the efficiency of the generated parallel mappings. The final contribution of this thesis is the guided rewriting method, where the user encodes a design space of structural transformations using high-level IR nodes called rewrite points. These strongly typed pragmas express macro rewrites and expose design choices as explorable parameters. The thesis proposes a small set of reusable rewrite points to achieve tiling, cache locality, data reuse and memory optimisation. A comparison with the vendor-provided handwritten kernel ARM Compute Library and the TVM code generator demonstrates the effectiveness of this thesis' contributions. With convolution as a use case, LIFT-generated direct and GEMM-based convolution implementations are shown to perform on par with the state-of-the-art solutions on a mobile GPU. Overall, this thesis demonstrates that a functional IR yields well to user-guided and automatic rewriting for high-performance code generation

    From Human Behavior to Machine Behavior

    Get PDF
    A core pursuit of artificial intelligence is the comprehension of human behavior. Imbuing intelligent agents with a good human behavior model can help them understand how to behave intelligently and interactively in complex situations. Due to the increase in data availability and computational resources, the development of machine learning algorithms for duplicating human cognitive abilities has made rapid progress. To solve difficult scenarios, learning-based methods must search for solutions in a predefined but large space. Along with implementing a smart exploration strategy, the right representation for a task can help narrow the search process during learning. This dissertation tackles three important aspects of machine intelligence: 1) prediction, 2) exploration, and 3) representation. More specifically we develop new algorithms for 1) predicting the future maneuvers or outcomes in pilot training and computer architecture applications; 2) exploration strategies for reinforcement learning in game environments and 3) scene representations for autonomous driving agents capable of handling large numbers of dynamic entities. This dissertation makes the following research contributions in the area of representation learning. First, we introduce a new time series representation for flight trajectories in intelligent pilot training simulations. Second, we demonstrate a method, Temporally Aware Embedding (TAE) for learning an embedding that leverages temporal information extracted from data retrieval series. Third, the dissertation introduces GRAD (Graph Representation for Autonomous Driving) that incorporates the future location of neighboring vehicles into the decision-making process. We demonstrate the usage of our models for pilot training, cache usage prediction, and autonomous driving; however, believe that our new time series representations can be applied to many other types of modeling problems

    Learning and Control of Dynamical Systems

    Get PDF
    Despite the remarkable success of machine learning in various domains in recent years, our understanding of its fundamental limitations remains incomplete. This knowledge gap poses a grand challenge when deploying machine learning methods in critical decision-making tasks, where incorrect decisions can have catastrophic consequences. To effectively utilize these learning-based methods in such contexts, it is crucial to explicitly characterize their performance. Over the years, significant research efforts have been dedicated to learning and control of dynamical systems where the underlying dynamics are unknown or only partially known a priori, and must be inferred from collected data. However, much of these classical results have focused on asymptotic guarantees, providing limited insights into the amount of data required to achieve desired control performance while satisfying operational constraints such as safety and stability, especially in the presence of statistical noise. In this thesis, we study the statistical complexity of learning and control of unknown dynamical systems. By utilizing recent advances in statistical learning theory, high-dimensional statistics, and control theoretic tools, we aim to establish a fundamental understanding of the number of samples required to achieve desired (i) accuracy in learning the unknown dynamics, (ii) performance in the control of the underlying system, and (iii) satisfaction of the operational constraints such as safety and stability. We provide finite-sample guarantees for these objectives and propose efficient learning and control algorithms that achieve the desired performance at these statistical limits in various dynamical systems. Our investigation covers a broad range of dynamical systems, starting from fully observable linear dynamical systems to partially observable linear dynamical systems, and ultimately, nonlinear systems. We deploy our learning and control algorithms in various adaptive control tasks in real-world control systems and demonstrate their strong empirical performance along with their learning, robustness, and stability guarantees. In particular, we implement one of our proposed methods, Fourier Adaptive Learning and Control (FALCON), on an experimental aerodynamic testbed under extreme turbulent flow dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-art stabilization performance and consistently outperforms conventional and other learning-based methods by at least 37%, despite using 8 times less data. The superior performance of FALCON arises from its physically and theoretically accurate modeling of the underlying nonlinear turbulent dynamics, which yields rigorous finite-sample learning and performance guarantees. These findings underscore the importance of characterizing the statistical complexity of learning and control of unknown dynamical systems.</p

    Consensus Algorithms of Distributed Ledger Technology -- A Comprehensive Analysis

    Full text link
    The most essential component of every Distributed Ledger Technology (DLT) is the Consensus Algorithm (CA), which enables users to reach a consensus in a decentralized and distributed manner. Numerous CA exist, but their viability for particular applications varies, making their trade-offs a crucial factor to consider when implementing DLT in a specific field. This article provided a comprehensive analysis of the various consensus algorithms used in distributed ledger technologies (DLT) and blockchain networks. We cover an extensive array of thirty consensus algorithms. Eleven attributes including hardware requirements, pre-trust level, tolerance level, and more, were used to generate a series of comparison tables evaluating these consensus algorithms. In addition, we discuss DLT classifications, the categories of certain consensus algorithms, and provide examples of authentication-focused and data-storage-focused DLTs. In addition, we analyze the pros and cons of particular consensus algorithms, such as Nominated Proof of Stake (NPoS), Bonded Proof of Stake (BPoS), and Avalanche. In conclusion, we discuss the applicability of these consensus algorithms to various Cyber Physical System (CPS) use cases, including supply chain management, intelligent transportation systems, and smart healthcare.Comment: 50 pages, 20 figure

    Declarative Specification of Intraprocedural Control-flow and Dataflow Analysis

    Get PDF
    Static program analysis plays a crucial role in ensuring the quality and security of software applications by detecting and fixing bugs, and potential security vulnerabilities in the code. The use of declarative paradigms in dataflow analysis as part of static program analysis has become increasingly popular in recent years. This is due to its enhanced expressivity and modularity, allowing for a higher-level programming approach, resulting in easy and efficient development.The aim of this thesis is to explore the design and implementation of control-flow and dataflow analyses using the declarative Reference Attribute Grammars formalism. Specifically, we focus on the construction of analyses directly on the source code rather than on an intermediate representation.The main result of this thesis is our language-agnostic framework, called IntraCFG. IntraCFG enables efficient and effective dataflow analysis by allowing the construction of precise and source-level control-flow graphs. The framework superimposes control-flow graphs on top of the abstract syntax tree of the program. The effectiveness of IntraCFG is demonstrated through two case studies, IntraJ and IntraTeal. These case studies showcase the potential and flexibility of IntraCFG in diverse contexts, such as bug detection and education. IntraJ supports the Java programming language, while IntraTeal is a tool designed for teaching program analysis for an educational language, Teal.IntraJ has proven to be faster than and as precise as well-known industrial tools. The combination of precision, performance, and on-demand evaluation in IntraJ leads to low latency in querying the analysis results. This makes IntraJ a suitable tool for use in interactive tools. Preliminary experiments have also been conducted to demonstrate how IntraJ can be used to support interactive bug detection and fixing.Additionally, this thesis presents JFeature, a tool for automatically extracting and summarising the features of a Java corpus, including the use of different Java features (e.g., use of Lambda Expressions) across different Java versions. JFeature provides researchers and developers with a deeper understanding of the characteristics of corpora, enabling them to identify suitable benchmarks for the evaluation of their tools and methodologies
    corecore