892 research outputs found

    Concurrent Image Processing Executive (CIPE)

    Get PDF
    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are discussed. The target machine for this software is a JPL/Caltech Mark IIIfp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules; (1) user interface, (2) host-resident executive, (3) hypercube-resident executive, and (4) application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube a data management method which distributes, redistributes, and tracks data set information was implemented

    Advanced Transport Operating System (ATOPS) control display unit software description

    Get PDF
    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software

    Simple chain grammars

    Get PDF
    A subclass of the LR(0)-grammars, the class of simple chain grammars is introduced. Although there exist simple chain grammars which are not LL(k) for any k, this new class of grammars is very close related to the class of LL(1) and simple LL(1) grammars. In fact it can be proved (not in this paper) that each simple chain grammar has an equivalent simple LL(1) grammar. A very simple (bottom-up) parsing method is provided. This method follows directly from the definition of a simple chain grammar and can easily be given in terms of the well-known LR(0) parsing method

    Software Design for the Programming Language Plans

    Get PDF
    Computing and Information Science

    Automating FEA programming

    Get PDF
    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer

    Modular digital holographic fringe data processing system

    Get PDF
    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented

    CRAY mini manual. Revision D

    Get PDF
    This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user

    Empirical assessment of architecture-based reliability of open-source software

    Get PDF
    A number of analytical models have been proposed earlier for quantifying software reliability. Some of these models estimate the failure behavior of the software using black-box testing, which treats the software as a monolithic whole. With the evolution of component based software development, the necessity to use white-box testing increased. A few architecture-based reliability models, which use white-box approach, were proposed earlier and they have been validated using several small case studies and proved to be correct. However, there is a dearth of large-scale empirical data used for reliability analysis. This thesis enriches the empirical knowledge in software reliability engineering. We use a real, large-scale case study, GCC compiler, for our experiments. To the best of out knowledge, this is the most comprehensive case study ever used for software reliability analysis. The software is instrumented with a profiler, to extract the execution profiles of the test cases. The execution profiles form the basis for building the operational profile of the system, which describes the software usage. The test case failures are traced back to the faults in the source code to analyze the failure behavior of the components. These results are used to estimate the reliability of the software, as well as the uncertainty in the reliability analysis using entropy
    corecore