429 research outputs found

    Asynchronous interfaces for IOPT-Flow to support GALS systems

    Get PDF
    45th Annual Conference of the IEEE Industrial Electronics Society: Lisbon, Portugal: oct. 14-17, 2019Throughout the course of time, distributing a global clock signal over a synchronous circuit has become a demanding task as a result of the broadening size and complexity of modern circuits. Globally Asynchronous Locally Synchronous (GALS) systems emerge as a solution to the laborious task of distributing a global clock over a large circuit, through the partitioning of said circuit into smaller, and therefore, more manageable blocks. The DS-Pnet (Dataflow, Signals and Petri nets) modelling language and its associated framework IOPT-Flow focus on supporting the development of cyber-physical systems, however, they may be a strong push to the development of GALS systems, through their multiple available tools that comprise a graphical editor, a simulator and automatic code generation tools, namely a VHDL (VHSIC Hardware Description Language) code generator. In order to facilitate the implementation of said GALS system in the IOPT-Flow framework, some components were created, these work together to form asynchronous interfaces that are a crucial element to any GALS system, thus providing options to designers that intent to develop a GALS system utilizing the IOPT-Flow framework

    Petri nets based components within globally asynchronous locally synchronous systems

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e ComputadoresThe main goal is to develop a solution for the interconnection of components constituent of a GALS - Globally Asynchronous, Locally Synchronous – system. The components are implemented in parallel obtained as a result of the partition of a model expressed a Petri net (PN), performed using the PNs editor SNOOPY-IOPT in conjunction with the Split tool and the tools to automatically generate the VHDL code from the representations of the PNML models resulting from the partition (these tools were developed under the project FORDESIGN and are available at http://www.uninova.pt/FORDESIGN). Typical solutions will be analyzed to ensure proper communication between components of the GALS system, as well as characterized and developed an appropriate solution for the interconnection of the components associated with the PN sub-models. The final goal (not attained with this thesis) would be to acquire a tool that allows generation of code for the interconnection solution from the associated components, considering a specific application. The solution proposed for componentes interconnection was coded in VHDL and the implementation platforms used for testing include the Xilinx FPGA Spartan-3 and Virtex-II

    Developing Globally-Asynchronous Locally- Synchronous Systems through the IOPT-Flow Framework

    Get PDF
    Throughout the years, synchronous circuits have increased in size and com-plexity, consequently, distributing a global clock signal has become a laborious task. Globally-Asynchronous Locally-Synchronous (GALS) systems emerge as a possible solution; however, these new systems require new tools. The DS-Pnet language formalism and the IOPT-Flow framework aim to support and accelerate the development of cyber-physical systems. To do so it offers a tool chain that comprises a graphical editor, a simulator and code gener-ation tools capable of generating C, JavaScript and VHDL code. However, DS-Pnets and IOPT-Flow are not yet tuned to handle GALS systems, allowing for partial specification, but not a complete one. This dissertation proposes extensions to the DS-Pnet language and the IOPT-Flow framework in order to allow development of GALS systems. Addi-tionally, some asynchronous components were created, these form interfaces that allow synchronous blocks within a GALS system to communicate with each other

    Elastic bundles :modelling and architecting asynchronous circuits with granular rigidity

    Get PDF
    PhD ThesisIntegrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs). The complexity of designing a SoC has increased rapidly over the years due to growing process and environmental variations coupled with global clock distribution di culty. Moreover, traditional synchronous design is not apt to handle the heterogeneous timing nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed a strong revival of asynchronous design principles. A new paradigm of digital circuits emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave of recent innovations in synchronous-asynchronous CAD integration, this paradigm is showing signs of commercial adoption in future SoCs mainly due to the scope for reuse of synchronous functional blocks and IP cores, and the co-existence of synchronous and asynchronous design styles in a common EDA framework. However, there is a lack of formal methods and tools to facilitate mixed synchronousasynchronous design. In this thesis, we propose a formal model based on Petri nets with step semantics to describe these circuits behaviourally. Implication of this model in the veri cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till date, this paradigm has been mainly explored on the basis of Globally Asynchronous Locally Synchronous (GALS) systems. Despite decades of research, GALS design has failed to gain traction commercially. To understand its drawbacks, a simulation framework characterising the physical and functional aspects of GALS SoCs is presented. A novel method for synthesising mixed synchronous-asynchronous circuits with varying levels of rigidity is proposed. Starting with a high-level data ow model of a system which is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity levels in the model without changing functional behaviour. The system is then partitioned into functional blocks of synchronous and asynchronous elements before being transformed into an equivalent circuit which can be synthesised using standard EDA tools

    GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems

    Get PDF
    International audienceA GALS (Globally Asynchronous, Locally Synchronous) system consists of several synchronous subsystems that evolve concurrently and interact with each other asynchronously. Most formalisms and design tools support either the synchronous paradigm or the asynchronous paradigm but rarely combine both, which requires an intricate modeling of GALS systems. In this paper, we present a new language, called GRL (GALS Representation Language) designed to model GALS systems in an abstract and versatile manner for the purpose of formal verification. GRL has formal semantics combining the synchronous reactive model underlying dataflow languages and the asynchronous concurrent model underlying process algebras. We present the basic concepts and the main constructs of the language, together with an illustrative example

    Asynchronous techniques for new generation variation-tolerant FPGA

    Get PDF
    PhD ThesisThis thesis presents a practical scenario for asynchronous logic implementation that would benefit the modern Field-Programmable Gate Arrays (FPGAs) technology in improving reliability. A method based on Asynchronously-Assisted Logic (AAL) blocks is proposed here in order to provide the right degree of variation tolerance, preserve as much of the traditional FPGAs structure as possible, and make use of asynchrony only when necessary or beneficial for functionality. The newly proposed AAL introduces extra underlying hard-blocks that support asynchronous interaction only when needed and at minimum overhead. This has the potential to avoid the obstacles to the progress of asynchronous designs, particularly in terms of area and power overheads. The proposed approach provides a solution that is complementary to existing variation tolerance techniques such as the late-binding technique, but improves the reliability of the system as well as reducing the design’s margin headroom when implemented on programmable logic devices (PLDs) or FPGAs. The proposed method suggests the deployment of configurable AAL blocks to reinforce only the variation-critical paths (VCPs) with the help of variation maps, rather than re-mapping and re-routing. The layout level results for this method's worst case increase in the CLB’s overall size only of 6.3%. The proposed strategy retains the structure of the global interconnect resources that occupy the lion’s share of the modern FPGA’s soft fabric, and yet permits the dual-rail iv completion-detection (DR-CD) protocol without the need to globally double the interconnect resources. Simulation results of global and interconnect voltage variations demonstrate the robustness of the method

    Petri net based development of globally-asynchronous locally-synchronous distributed embedded systems

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de ComputadoresA model-based development approach (MBDA) for Globally-Asynchronous Locally- Synchronous (GALS) Distributed Embedded Systems (DESs) is proposed. This approach relies on the GALS-DESs specification through (low- or high-level) Petri net classes, which ensure that the created models are GALS, locally deterministic, distributable, networkindependent, and platform-independent and support their simulation, verification, and implementation (using simulation, model-checking, and code generation tools). The use of network- and platform-independent models enable the use of heterogeneous communication networks to support the distributed components interaction and enable the use of heterogeneous platforms to support the components and the communication nodes implementation. To enable the proposed MBDA, Petri nets are extended with a set of the concepts, most notably time-domains and asynchronous-channels. Algorithms to support the verification of GALS-DES models and their decomposition into implementable sub-models are also proposed. A tool chain framework (IOPT-tools) was extended with this work proposals, supporting their validation and the GALS-DESs development.Fundação para a Ciência e a Tecnologia - grant ref. SFRH/BD/62171/200

    An A-FPGA architecture for relative timing based asynchronous designs

    Get PDF
    pre-printThis paper presents an asynchronous FPGA architecture that is capable of implementing relative timing based asynchronous designs. The architecture uses the Xilinx 7-Series architecture as a starting point and proposes modifications that would make it asynchronous design capable while keeping it fully functional for synchronous designs. Even though the architecture requires additional components, it is observed when implemented on the 64-nm node, the area of the slice was increases marginally by 7%. The architecture leaves configurable routing structures untouched and does not compromise on performance of the synchronous architecture

    Test Quality Analysis and Improvement for an Embedded Asynchronous FIFO

    Full text link
    Embedded First-InFirst-Out (FIFO) memories are increasingly used in many IC designs.We have created a new full-custom embedded FIFO module withasynchronous read and write clocks, which is at least a factor twosmaller and also faster than SRAM-based and standard-cell-basedcounterparts. The detection qualities of the FIFO test for bothhard and weak resistive shorts and opens have been analyzed by anIFA-like method based on analog simulation. The defect coverage ofthe initial FIFO test for shorts in the bit-cell matrix has beenimproved by inclusion of an additional data background andlow-voltage testing; for low-resistant shorts, 100% defect coverageis obtained. The defect coverage for opens has been improved by anew test procedure which includes waitingperiods

    Design of application-specific instruction set processors with asynchronous methodology for embedded digital signal processing applications.

    Get PDF
    Kwok Yan-lun Andy.Thesis submitted in: November 2004.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 133-137).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.iiAcknowledgements --- p.iiiList of Figures --- p.viiList of Tables and Examples --- p.xChapter 1. --- Introduction --- p.1Chapter 1.1. --- Motivation --- p.1Chapter 1.2. --- Objective and Approach --- p.4Chapter 1.3. --- Thesis Organization --- p.5Chapter 2. --- Related Work --- p.7Chapter 2.1. --- Coverage --- p.7Chapter 2.2. --- ASIP Design Methodologies --- p.8Chapter 2.3. --- Asynchronous Technology on Processors --- p.12Chapter 2.4. --- Summary --- p.14Chapter 3. --- Asynchronous Design Methodology --- p.15Chapter 3.1. --- Overview --- p.15Chapter 3.2. --- Asynchronous Design Style --- p.17Chapter 3.2.1. --- Micropipelines --- p.17Chapter 3.2.2. --- Fine-grain Pipelining --- p.20Chapter 3.2.3. --- Globally-Asynchronous Locally-Synchronous (GALS) Design --- p.22Chapter 3.3. --- Advantages of GALS in ASIP Design --- p.27Chapter 3.3.1. --- Reuse of Synchronous and Asynchronous IP --- p.27Chapter 3.3.2. --- Fine Tuning of Performance and Power Consumption --- p.27Chapter 3.3.3. --- Synthesis-based Design Flow --- p.28Chapter 3.4. --- Design of GALS Asynchronous Wrapper --- p.28Chapter 3.4.1. --- Handshake Protocol --- p.28Chapter 3.4.2. --- Pausible Clock Generator --- p.29Chapter 3.4.3. --- Port Controllers --- p.30Chapter 3.4.4. --- Performance of the Asynchronous Wrapper --- p.33Chapter 3.5. --- Summary --- p.35Chapter 4. --- Platform Based ASIP Design Methodology --- p.36Chapter 4.1. --- Platform Based Approach --- p.36Chapter 4.1.1. --- The Definition of Our Platform --- p.37Chapter 4.1.2. --- The Definition of the Platform Based Design --- p.37Chapter 4.2. --- Platform Architecture --- p.38Chapter 4.2.1. --- The Nature of DSP Algorithms --- p.38Chapter 4.2.2. --- Design Space of Datapath Optimization --- p.46Chapter 4.2.3. --- Proposed Architecture --- p.49Chapter 4.2.4. --- The Strategy of Realizing an Optimized Datapath --- p.51Chapter 4.2.5. --- Pipeline Organization --- p.59Chapter 4.2.6. --- GALS Partitioning --- p.61Chapter 4.2.7. --- Operation Mechanism --- p.63Chapter 4.3. --- Overall Design Flow --- p.67Chapter 4.4. --- Summary --- p.70Chapter 5. --- Design of the ASIP Platform --- p.72Chapter 5.1. --- Design Goal --- p.72Chapter 5.2. --- Instruction Fetch --- p.74Chapter 5.2.1. --- Instruction fetch unit --- p.74Chapter 5.2.2. --- Zero-overhead loops and Subroutines --- p.75Chapter 5.3. --- Instruction Decode --- p.77Chapter 5.3.1. --- Instruction decoder --- p.77Chapter 5.3.2. --- The Encoding of Parallel and Complex Instructions --- p.80Chapter 5.4. --- Datapath --- p.81Chapter 5.4.1. --- Base Functional Units --- p.81Chapter 5.4.2. --- Functional Unit Wrapper Interface --- p.83Chapter 5.5. --- Register File Systems --- p.84Chapter 5.5.1. --- Memory Hierarchy --- p.84Chapter 5.5.2. --- Register File Organization --- p.85Chapter 5.5.3. --- Address Generation --- p.93Chapter 5.5.4. --- Load and Store --- p.98Chapter 5.6. --- Design Verification --- p.100Chapter 5.7. --- Summary --- p.104Chapter 6. --- Case Studies --- p.105Chapter 6.1. --- Objective --- p.105Chapter 6.2. --- Approach --- p.105Chapter 6.3. --- Based versus Optimized --- p.106Chapter 6.3.1. --- Matrix Manipulation --- p.106Chapter 6.3.2. --- Autocorrelation --- p.109Chapter 6.3.3. --- CORDIC --- p.110Chapter 6.4. --- Optimized versus Advanced Commercial DSPs --- p.113Chapter 6.4.1. --- Introduction to TMS320C62x and SC140 --- p.113Chapter 6.4.2. --- Results --- p.115Chapter 6.5. --- Summary --- p.116Chapter 7. --- Conclusion --- p.118Chapter 7.1. --- When ASIPs encounter asynchronous --- p.118Chapter 7.2. --- Contributions --- p.120Chapter 7.3. --- Future Directions --- p.121Chapter A --- Synthesis of Extended Burst-Mode Asynchronous Finite State Machine --- p.122Chapter B --- Base Instruction Set --- p.124Chapter C --- Special Registers --- p.127Chapter D --- Synthesizable Model of GALS Wrapper --- p.130Reference --- p.13
    corecore