117 research outputs found

    Parallel distribution compensation PID based on Takagi-Sugeno fuzzy model applied on egyptian load frequency control

    Get PDF
    This paper presents a new technique for a Takagi-Sugeno (TS) fuzzy parallels distribution compensation-PID'S (TSF-PDC-PID'S) to improve the performance of Egyptian load frequency control (ELFC). In this technique, the inputs to a TS Fuzzy model are the parameters of the change of operating points. The TS Fuzzy model can definite the suitable PID control for a certain operating point. The parameters of PID'S controllers are obtained by ant colony optimization (ACO) technique in each operating point based on an effective cost function. The system controlled by the proposed TSF-PDC-PID’S is investigated under different types of disturbances, uncertainty and parameters variations. The simulation results ensure that the TSF-PDC-PID'S can update the suitable PID controller at several operating points so, it has a good dynamic response under many types of disturbances compared to fixed Optimal PID controller

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Fractional order PID controller design for LFC in electric power systems using imperialist competitive algorithm

    Get PDF
    AbstractIn this paper, fractional order PID (FOPID) controller was proposed for load frequency control (LFC) in an interconnected power system. This controller had five parameters to be tuned; thus, it provided two more degrees of freedom in comparison with the conventional PID. For proper tuning of the controller parameters, imperialist competitive algorithm (ICA) was used. ICA is a new evolutionary algorithm with proved efficiency. In this study, simulation investigations were carried out on a three-area power system with different generating units. These results showed that FOPID controller was robust to the parameter changes in the power system. Also, the simulation results certified much better performance of FOPID controller for LFC in comparison with conventional PID controllers

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Two degree of freedom fractional PI scheme for automatic voltage regulation

    Get PDF
    The effectiveness of the inferential control scheme based on robust fractional-order proportional integral (FOPI) controller is presented for automatic voltage regulation (AVR) applications. The method uses two degree of freedom (2DOF) in FOPI scheme, which is tuned with the whale optimization algorithm (WOA). Actually, any AVR needs to keep the reactive power of synchronous generator at demand level, stable voltage and frequency of the electrical power supplies. In this study, the 2DOF FOPI controller is proposed to deviate away from the standard integer order, to show the superiority of extra degree of freedom in both structure and controller. To improve the AVR performance, a new performance measure is proposed for the parameter tuning. The method acquires the significant robustness in parameter perturbation and disturbance interruptions. It is observed in the step response quality that the overshoot and settling time can be reduced to approximately by half than the recently published scheme. The various analyses are shown to accept the dominance of the proposed controller in terms of robustness

    Power System Stability Analysis using Neural Network

    Full text link
    This work focuses on the design of modern power system controllers for automatic voltage regulators (AVR) and the applications of machine learning (ML) algorithms to correctly classify the stability of the IEEE 14 bus system. The LQG controller performs the best time domain characteristics compared to PID and LQG, while the sensor and amplifier gain is changed in a dynamic passion. After that, the IEEE 14 bus system is modeled, and contingency scenarios are simulated in the System Modelica Dymola environment. Application of the Monte Carlo principle with modified Poissons probability distribution principle is reviewed from the literature that reduces the total contingency from 1000k to 20k. The damping ratio of the contingency is then extracted, pre-processed, and fed to ML algorithms, such as logistic regression, support vector machine, decision trees, random forests, Naive Bayes, and k-nearest neighbor. A neural network (NN) of one, two, three, five, seven, and ten hidden layers with 25%, 50%, 75%, and 100% data size is considered to observe and compare the prediction time, accuracy, precision, and recall value. At lower data size, 25%, in the neural network with two-hidden layers and a single hidden layer, the accuracy becomes 95.70% and 97.38%, respectively. Increasing the hidden layer of NN beyond a second does not increase the overall score and takes a much longer prediction time; thus could be discarded for similar analysis. Moreover, when five, seven, and ten hidden layers are used, the F1 score reduces. However, in practical scenarios, where the data set contains more features and a variety of classes, higher data size is required for NN for proper training. This research will provide more insight into the damping ratio-based system stability prediction with traditional ML algorithms and neural networks.Comment: Masters Thesis Dissertatio

    Development of a control strategy to compensate transient behaviour due to atmospheric disturbances in solar thermal energy generation systems using short-time prediction data

    Get PDF
    La energía solar térmica concentrada (CSP) es una forma prometedora de energía renovable que puede aprovechar la energía del sol y ayudar a sustituir el uso de combustibles fósiles para la generación de electricidad. Sin embargo, enfrenta retos para aumentar su despliegue a nivel mundial. Las torres solares, un tipo de tecnología CSP, se componen principalmente de un campo solar y una torre en la que un receptor funciona como intercambiador de calor para alimentar un bloque de potencia. El campo solar está formado por miles de heliostatos, que son espejos capaces de seguir el sol y proyectar la luz solar concentrada sobre el receptor. Las torres solares con almacenamiento térmico funcionan continuamente, pero están sujetas a perturbaciones causadas por la interacción de la luz solar con la atmósfera. Este comportamiento puede afectar la integridad del receptor. Para determinar la posición de cada helióstato se utilizan complejos métodos de optimización. Sin embargo, estos métodos están sujetos a incertidumbre en los parámetros y no pueden compensar perturbaciones en tiempo real, como las nubes, debido a su costo computacional. Esta tesis aborda esta cuestión como un problema de control, reduciendo el número de variables. En lugar de encontrar el ángulo de elevación y azimutal para miles de helióstatos, se utilizan dos variables dentro de grupos de helióstatos. A continuación, se implementa una estrategia de control por retroalimentación, aprovechando esta reducción dimensional. Además, la metodología desarrollada en esta tesis utiliza información de un sistema de predicción de radiación solar a corto plazo de última generación, dentro de una novedosa estrategia de control adaptativo para el campo solar.DoctoradoDoctor en Ingeniería Mecánic
    corecore