1,656 research outputs found

    Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

    Full text link
    Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem \cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system \cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.Comment: 21 page

    Design of Intelligent PID Controller for AVR System Using an Adaptive Neuro Fuzzy Inference System

    Get PDF
    This paper presents a hybrid approach involving signal to noise ratio (SNR) and particle swarm optimization (PSO) for design the optimal and intelligent proportional-integral-derivative (PID) controller of an automatic voltage regulator (AVR) system with uses an adaptive neuro fuzzy inference system (ANFIS). In this paper determined optimal parameters of PID controller with SNR-PSO approach for some events and use these optimal parameters of PID controller for design the intelligent PID controller for AVR system with ANFIS.  Trial and error method can be used to find a suitable design of anfis based an intelligent controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimization algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the SNRPSO approach to design an intelligent controller for AVR. SNR-PSO is a method that combines the features of PSO and SNR in order to improve the optimize operation. In order to emphasize the advantages of the proposed SNR-PSO PID controller, we also compared with the CRPSO PID controller. The proposed method was indeed more efficient and robust in improving the step response of an AVR system and numerical simulations are provided to verify the effectiveness and feasibility of PID controller of AVR based on SNRPSO algorithm.DOI:http://dx.doi.org/10.11591/ijece.v4i5.652

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented
    corecore