1,065 research outputs found

    A fully automatic forest parameters extraction at single-tree level: a comparison of MLS and TLS applications

    Get PDF
    Forests are vital for ecological, economic, and social reasons, and adopting sustainable forest management practices is necessary. While traditional forest monitoring techniques provide detailed data, they are time-consuming; conversely, geomatic techniques can provide more detailed data for forest resource management. This study aims to assess the suitability of Mobile Mapping Systems (MMS) with simultaneous localisation and mapping (SLAM) technology for precision forestry purposes in challenging environments. We compared the performance of MMS data with Terrestrial Laser Scanning (TLS) data and evaluated the Forest Structural Complexity Tool (FSCT), which was developed for TLS datasets, on MMS data. The case study area is a highly sloped coniferous forest in the Italian Alps affected by a severe fire in 2017. Data were processed using a fully automated open-source Python tool that detects each tree's position, Diameter at Breast Height (DBH), and height. The validation procedure was conducted with respect to the TLS point cloud manually segmented. The results show that using MMS with SLAM technology is suitable for precision forestry purposes in challenging environments and that FSCT performs well on MMS data

    Carisma workshop: from 21 to 23 August 2017 in Helsinki, Finland

    Get PDF
    Abstraktit201

    Investigating the Feasibility of Multi-Scan Terrestrial Laser Scanning to Characterize Tree Communities in Southern Boreal Forests

    Get PDF
    Terrestrial laser scanning (TLS) has proven to accurately represent individual trees, while the use of TLS for plot-level forest characterization has been studied less. We used 91 sample plots to assess the feasibility of TLS in estimating plot-level forest inventory attributes, namely the stem number (N), basal area (G), and volume (V) as well as the basal area weighed mean diameter (Dg) and height (Hg). The effect of the sample plot size was investigated by using different-sized sample plots with a fixed scan set-up to also observe possible differences in the quality of point clouds. The Gini coefficient was used to measure the variation in tree size distribution at the plot-level to investigate the relationship between stand heterogeneity and the performance of the TLS-based method. Higher performances in tree detection and forest attribute estimation were recorded for sample plots with a low degree of tree size variation. The TLS-based approach captured 95% of the variation in Hg and V, 85% of the variation in Dg and G, and 67% of the variation in N. By increasing the sample plot size, the tree detection rate was decreased, and the accuracy of the estimates, especially G and N, decreased. This study emphasizes the feasibility of TLS-based approaches in plot-level forest inventories in varying southern boreal forest conditions

    Measuring tree growth using terrestrial laser scanning

    Get PDF
    Forests are dynamic ecosystems that are constantly changing. The most common natural reasons for change in forests are the growth and death of trees, as well as the damage occurring to them. Tree growth appears as an increment of its structural dimensions, such as stem diameter, height, and crown volume, which all affect the structure of a tree. Repeated measurements of tree characteristics enable observations of the respective increments indicating tree growth. According to current knowledge, the tree growth process follows the priority theory, where trees aim to achieve sufficient lightning conditions for the tree crown through primary growth, whereas increment in diameter results from the secondary growth. Tree growth is known to have an effect on the carbon sequestration potential of trees as well as on the quality of timber. To improve the understanding of the underlying cause–effect relations driving tree growth, methods to quantify structural changes in trees and forests are needed. The use of terrestrial laser scanning (TLS) has emerged during the recent decade as an effective tool to determine attributes of individual trees. However, the capacity of TLS point cloud-based methods to measure tree growth remains unexplored. This thesis aimed at developing new methods to measure tree growth in boreal forest conditions by utilizing two-date TLS point clouds. The point clouds were also used to investigate how trees allocate their growth and how the stem form of trees develops, to deepen the understanding of tree growth processes under different conditions and over the life cycle of a tree. The capability of the developed methods was examined during a five- to nine-year monitoring period with two separate datasets consisting of 1315 trees in total. Study I demonstrated the feasibility of TLS point clouds for measuring tree growth in boreal forests. In studies II and III, an automated point cloud-based method was further developed and tested for measuring tree growth. The used method could detect trees from two-date point clouds, with the detected trees representing 84.5% of total basal area. In general, statistically significant changes in the examined attributes, such as diameter at breast height, tree height, stem volume, and logwood volume, were detected during the monitoring periods. Tree growth and stem volume allocation seemed to be more similar for trees growing in similar structural conditions. The findings obtained in this thesis demonstrate the capabilities of repeatedly acquired TLS point clouds to be used for measuring the growth of trees and for characterizing the structural changes in forests. This thesis showed that TLS point cloud-based methods can be used for enhancing the knowledge of how trees allocate their growth, and thus help discover the underlying reasons for processes driving changes in forests, which could generate benefits for ecological or silvicultural applications where information on tree growth and forest structural changes is needed

    Puiden kasvun mittaaminen maastolaserkeilauksella

    Get PDF
    Forests are dynamic ecosystems that are constantly changing. The most common natural reasons for change in forests are the growth and death of trees, as well as the damage occurring to them. Tree growth appears as an increment of its structural dimensions, such as stem diameter, height, and crown volume, which all affect the structure of a tree. Repeated measurements of tree characteristics enable observations of the respective increments indicating tree growth. According to current knowledge, the tree growth process follows the priority theory, where trees aim to achieve sufficient lightning conditions for the tree crown through primary growth, whereas increment in diameter results from the secondary growth. Tree growth is known to have an effect on the carbon sequestration potential of trees as well as on the quality of timber. To improve the understanding of the underlying cause–effect relations driving tree growth, methods to quantify structural changes in trees and forests are needed. The use of terrestrial laser scanning (TLS) has emerged during the recent decade as an effective tool to determine attributes of individual trees. However, the capacity of TLS point cloud-based methods to measure tree growth remains unexplored. This thesis aimed at developing new methods to measure tree growth in boreal forest conditions by utilizing two-date TLS point clouds. The point clouds were also used to investigate how trees allocate their growth and how the stem form of trees develops, to deepen the understanding of tree growth processes under different conditions and over the life cycle of a tree. The capability of the developed methods was examined during a five- to nine-year monitoring period with two separate datasets consisting of 1315 trees in total. Study I demonstrated the feasibility of TLS point clouds for measuring tree growth in boreal forests. In studies II and III, an automated point cloud-based method was further developed and tested for measuring tree growth. The used method could detect trees from two-date point clouds, with the detected trees representing 84.5% of total basal area. In general, statistically significant changes in the examined attributes, such as diameter at breast height, tree height, stem volume, and logwood volume, were detected during the monitoring periods. Tree growth and stem volume allocation seemed to be more similar for trees growing in similar structural conditions. The findings obtained in this thesis demonstrate the capabilities of repeatedly acquired TLS point clouds to be used for measuring the growth of trees and for characterizing the structural changes in forests. This thesis showed that TLS point cloud-based methods can be used for enhancing the knowledge of how trees allocate their growth, and thus help discover the underlying reasons for processes driving changes in forests, which could generate benefits for ecological or silvicultural applications where information on tree growth and forest structural changes is needed

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed

    Laserkeilausaineiston ja katunäkymäkuvien hyödyntäminen tieympäristön seurannassa

    Get PDF
    Utilization of laser scanning has increased during the past few years in many fields of applications, for example, in road environment monitoring. Mild winters, increasing rainfalls and frost are deteriorating the surface and structure of the road causing road damages. The road environment and its condition can be examined for example with laser scanning and street view images. Utilization of laser scanning data and street view images in road environment monitoring was studied in this thesis. The main focus was on the road damages and drainage. Also individual trees were detected nearby road scenes. TerraModeler and TerraScan software were used for investigations. Five different lidar datasets were used to detect road damages and drainage. Both mobile and helicopter-based lidar data were available from Jakomäki area. In Rauma case, there were two datasets collected from the helicopter but the point densities were different. In addition, to helicopter-based lidar data, there were also street view images available from BlomSTREET service in Hyvinkää case. The results between the datasets were compared. Aim was to investigate if same damages can be found from the several datasets that have different point densities. Lidar data for individual tree detection was collected by helicopter from Korppoo area. Tree locations were also measured with a tachymeter to get reference data for automatic detection. Heights of the trees were manually determined from the point cloud. Manually measured heights and locations were compared with automatically detected ones. Detection of rut depths, slopes and drainage is possible from the high point density datasets. From lower point density datasets it is not possible to detect for example rut depths. Point cloud is possible to color by slopes, which may give some information about rut locations even from lower point density datasets. Obtaining slopes and drainage accurately is also possible from lower point density data. With TerraModeler water gathering points can be obtained. Panorama pictures from BlomSTREET can be utilized for ensuring if there is a rainwater outlet or if water will gather as a puddle. Tree locations were detected in a meter accuracy with automatic method. Successful detection of tree heights and locations is dependent on many things. Successful classification of the data and creation of tree models are the most important parameters.Laserkeilaus on yleistynyt ja sitä hyödynnetään useissa eri sovelluksissa kuten esimerkiksi tiesovelluksissa. Leudot ja sateiset talvet sekä routa kuluttavat tien pintaa ja rakennetta aiheuttaen tievaurioita, jotka voivat olla vaaraksi liikenteelle. Tienkuntoa ja sen ympäristöä voidaan tarkastella esimerkiksi laserkeilausaineistojen sekä katunäkymäkuvien avulla. Työssä tutkittiin kuinka laserkeilausaineistoa ja katunäkymäkuvia voidaan hyödyntää tieympäristön seurannassa. Tutkimuksessa keskityttiin tarkastelemaan tievaurioita ja kuivatusta sekä tiealueiden läheisyydessä sijaitsevien puiden tunnistusta. Tutkimuksessa käytettiin TerraModeler ja TerraScan ohjelmistoja. Tievaurioita ja kuivatusta tutkittiin viidestä eri aineistosta kolmelta eri alueelta. Jakomäen alueelta tien ominaisuuksia tutkittiin sekä mobiili- että helikopterilaserkeilausaineistosta ja Rauman alueelta vaurioita kartoitettiin kahdesta eri helikopterilla kerätystä pistetiheyden aineistosta. Hyvinkäältä helikopterilla kerätyn laserkeilausaineiston lisäksi oli saatavilla katunäkymäkuvia BlomSTREET palvelusta. Aineistoista saatuja tuloksia vertailtiin keskenään ja tutkittiin, onko niistä mahdollista havaita samankaltaisia tuloksia. Yksittäisen puun tunnistukseen käytettiin helikopterilla kerättyä laserkeilausaineistoa Korppoon alueelta ja referenssinä aineistolle toimi maastossa mitatut puiden sijainnit. Automaattisesti määritettyjen puiden sijaintia verrattiin maastossa mitattuihin sijainteihin. Myös puiden korkeus määritettiin pistepilvestä manuaalisesti ja tätä verrattiin automaattiseen korkeuden määritykseen. Korkean pistetiheyden laserkeilausaineistoilla on mahdollista tutkia tien urautumista, tien kaltevuuksia ja kuivatusta. Matalamman pistetiheyden aineistoista ei pystytä määrittämään esimerkiksi urasyvyyksiä. Pistepilvi on mahdollista värjätä kaltevuuksien mukaan, minkä avulla urautumista voidaan havaita jossain määrin myös matalampien pistetiheyksien aineistoista. Tien kaltevuuksia ja kuivatusta pystytään havaitsemaan tarkasti jopa alhaisista pistetiheyden aineistoista. TerraModelerin avulla voidaan määrittää alueet, johon sadevesi kasautuu. BlomSTREET 360 panoraamakuvien avulla pystytään tarkastamaan onko kohdassa sadevesikaivo vai kerääntyykö vesi lammikoiksi. Yksittäisten puiden sijainnin määrittäminen onnistui noin metrin tarkkuudella, mutta sijainnin ja korkeuden määrittämisen onnistuminen on riippuvainen monesta tekijästä. Pistepilven luokittelun onnistumisen lisäksi yksi tärkeä tekijä on puiden muodoista tehdyt mallit, joiden avulla TerraScan ohjelmisto etsii yksittäisiä puita
    corecore