778 research outputs found

    Development and three-dimensional morphology of the zygomaticotemporal suture in primate skulls

    Get PDF
    Cranial sutures are an essential part of the growing skull, allowing bones to increase in size during growth, with their morphology widely believed to be dictated by the forces and displacements that they experience. The zygomaticotemporal suture in primates is located in the relatively weak zygomatic arch, and externally it appears a very simple connection. However, large forces are almost certainly transmitted across this suture, suggesting that it requires some level of stability while also allowing controlled movements under high loading. Here we examine the 2- and 3-dimensional (3D) morphology of the zygomaticotemporal suture in an ontogenetic series of Macaca fascicularis skulls. High resolution microcomputed tomography data sets were examined, and virtual and physical 3D replicas were created to assess both structure and general stability. The zygomaticotemporal suture is much more complex than its external appearance suggests, with interlocking facets between the adjacent zygomatic and temporal bones. It appears as if some movement is permitted across the suture in younger animals, but as they approach adulthood the complexity of the suture's interlocking bone facets reaches a level where these movements become minimal

    Automatic 3D Cranial Landmark Positioning based on Surface Curvature Feature using Machine Learning

    Get PDF
    Cranial anthropometric reference points (landmarks) play an important role in craniofacial reconstruction and identification. Knowledge to detect the position of landmarks is critical. This work aims to locate landmarks automatically. Landmarks positioning using Surface Curvature Feature (SCF) is inspired by conventional methods of finding landmarks based on morphometrical features. Each cranial landmark has a unique shape. With the appropriate 3D descriptors, the computer can draw associations between shapes and landmarks using machine learning. The challenge in classification and detection in three-dimensional space is to determine the model and data representation. Using three-dimensional raw data in machine learning is a serious volumetric issue. This work uses the Surface Curvature Feature as a three-dimensional descriptor. It extracts the local surface curvature shape into a projection sequential value (depth). A machine learning method is developed to determine the position of landmarks based on local surface shape characteristics. Classification is carried out from the top-n prediction probabilities for each landmark class, from a set of predictions, then filtered to get pinpoint accuracy. The landmark prediction points are hypothetically clustered in a particular area, so a cluster-based filter is appropriate to isolate them. The learning model successfully detected the landmarks, with the average distance between the prediction points and the ground truth being 0.0326 normalized units. The cluster-based filter is implemented to increase accuracy compared to the ground truth. Thus, SCF is suitable as a 3D descriptor of cranial landmarks

    Automatic B-Spline Parameterisation And Scaling Estimation For Rigid Super-Curves Based Skull Registration.

    Get PDF
    Dalam sistem klinik yang mengamalkan auto atau semi-auto kraniofasial berbantukan komputer, pemadanan pengimbas CT tengkorak yang diambil pada masa yang berbeza bagi pesakit yang sama merupakan suatu prasyarat untuk sebarang analisis lanjutan

    A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification

    Get PDF
    This paper represents the first survey on the application of AI techniques for the analysis of biomedical images with forensic human identification purposes. Human identification is of great relevance in today’s society and, in particular, in medico-legal contexts. As consequence, all technological advances that are introduced in this field can contribute to the increasing necessity for accurate and robust tools that allow for establishing and verifying human identity. We first describe the importance and applicability of forensic anthropology in many identification scenarios. Later, we present the main trends related to the application of computer vision, machine learning and soft computing techniques to the estimation of the biological profile, the identification through comparative radiography and craniofacial superimposition, traumatism and pathology analysis, as well as facial reconstruction. The potentialities and limitations of the employed approaches are described, and we conclude with a discussion about methodological issues and future research.Spanish Ministry of Science, Innovation and UniversitiesEuropean Union (EU) PGC2018-101216-B-I00Regional Government of Andalusia under grant EXAISFI P18-FR-4262Instituto de Salud Carlos IIIEuropean Union (EU) DTS18/00136European Commission H2020-MSCA-IF-2016 through the Skeleton-ID Marie Curie Individual Fellowship 746592Spanish Ministry of Science, Innovation and Universities-CDTI, Neotec program 2019 EXP-00122609/SNEO-20191236European Union (EU)Xunta de Galicia ED431G 2019/01European Union (EU) RTI2018-095894-B-I0

    Effective 3D Geometric Matching for Data Restoration and Its Forensic Application

    Get PDF
    3D geometric matching is the technique to detect the similar patterns among multiple objects. It is an important and fundamental problem and can facilitate many tasks in computer graphics and vision, including shape comparison and retrieval, data fusion, scene understanding and object recognition, and data restoration. For example, 3D scans of an object from different angles are matched and stitched together to form the complete geometry. In medical image analysis, the motion of deforming organs is modeled and predicted by matching a series of CT images. This problem is challenging and remains unsolved, especially when the similar patterns are 1) small and lack geometric saliency; 2) incomplete due to the occlusion of the scanning and damage of the data. We study the reliable matching algorithm that can tackle the above difficulties and its application in data restoration. Data restoration is the problem to restore the fragmented or damaged model to its original complete state. It is a new area and has direct applications in many scientific fields such as Forensics and Archeology. In this dissertation, we study novel effective geometric matching algorithms, including curve matching, surface matching, pairwise matching, multi-piece matching and template matching. We demonstrate its applications in an integrated digital pipeline of skull reassembly, skull completion, and facial reconstruction, which is developed to facilitate the state-of-the-art forensic skull/facial reconstruction processing pipeline in law enforcement

    A Hybrid Model for Photographic Supra-Projection

    Get PDF
    Photographic supra-projection (CS) comes under forensic process in which video shots or photographs of a missing person are compared against the skull that is found. By projecting both photographs on top of each other (or, even better, matching a scanned 3-D skull model against the face photo/video shot), the forensic anthropologist can try to ascertain whether it is the same person. The overall process is affected by inherent uncertainty, mostly because two objects of different nature (a face and a skull ) are involved. In this paper, we extended existing evolutionary-algorithm-based techniques to automatically superimpose the 3-D skull model and the 2-D face photo with the aim to overcome the limitations that are associated with the different sources of uncertainty, which are present in the problem. Three different approaches to handle the imprecision will be proposed: Viola- Jones Face Detection Framework, Canonical Correlation Analysis and Inverse Compositional Active Appearance Model. DOI: 10.17762/ijritcc2321-8169.15076

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury

    Evaluation and reproducibility of volumetric measurements on maxillary sinuses.

    Get PDF
    The aim of our study is to validate the use of Dolphin Imaging software to analyze CBCT images as a tool for volumetric estimation of maxillary sinus volumes and to test the intra- and inter-examiner reproducibility of this technique. In addition, other aims is to demonstrate the absence of correlation between the volumetric dimensions of the paranasal maxillary spaces and the three different skeletal types
    corecore