7,762 research outputs found

    VIVE3D: Viewpoint-Independent Video Editing using 3D-Aware GANs

    Full text link
    We introduce VIVE3D, a novel approach that extends the capabilities of image-based 3D GANs to video editing and is able to represent the input video in an identity-preserving and temporally consistent way. We propose two new building blocks. First, we introduce a novel GAN inversion technique specifically tailored to 3D GANs by jointly embedding multiple frames and optimizing for the camera parameters. Second, besides traditional semantic face edits (e.g. for age and expression), we are the first to demonstrate edits that show novel views of the head enabled by the inherent properties of 3D GANs and our optical flow-guided compositing technique to combine the head with the background video. Our experiments demonstrate that VIVE3D generates high-fidelity face edits at consistent quality from a range of camera viewpoints which are composited with the original video in a temporally and spatially consistent manner.Comment: CVPR 2023. Project webpage and video available at http://afruehstueck.github.io/vive3

    Deep Transfer Learning Applications in Intrusion Detection Systems: A Comprehensive Review

    Full text link
    Globally, the external Internet is increasingly being connected to the contemporary industrial control system. As a result, there is an immediate need to protect the network from several threats. The key infrastructure of industrial activity may be protected from harm by using an intrusion detection system (IDS), a preventive measure mechanism, to recognize new kinds of dangerous threats and hostile activities. The most recent artificial intelligence (AI) techniques used to create IDS in many kinds of industrial control networks are examined in this study, with a particular emphasis on IDS-based deep transfer learning (DTL). This latter can be seen as a type of information fusion that merge, and/or adapt knowledge from multiple domains to enhance the performance of the target task, particularly when the labeled data in the target domain is scarce. Publications issued after 2015 were taken into account. These selected publications were divided into three categories: DTL-only and IDS-only are involved in the introduction and background, and DTL-based IDS papers are involved in the core papers of this review. Researchers will be able to have a better grasp of the current state of DTL approaches used in IDS in many different types of networks by reading this review paper. Other useful information, such as the datasets used, the sort of DTL employed, the pre-trained network, IDS techniques, the evaluation metrics including accuracy/F-score and false alarm rate (FAR), and the improvement gained, were also covered. The algorithms, and methods used in several studies, or illustrate deeply and clearly the principle in any DTL-based IDS subcategory are presented to the reader

    Decoding spatial location of attended audio-visual stimulus with EEG and fNIRS

    Get PDF
    When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location in the presence of background noises and irrelevant visual objects. The ability to decode the attended spatial location would facilitate brain computer interfaces (BCI) for complex scene analysis. Here, we tested two different neuroimaging technologies and investigated their capability to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. For functional near-infrared spectroscopy (fNIRS), we targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. We found that fNIRS provides robust decoding of attended spatial locations for most participants and correlates with behavioral performance. Moreover, we found that FEF makes a large contribution to decoding performance. Surprisingly, the performance was significantly above chance level 1s after cue onset, which is well before the peak of the fNIRS response. For electroencephalography (EEG), while there are several successful EEG-based algorithms, to date, all of them focused exclusively on auditory modality where eye-related artifacts are minimized or controlled. Successful integration into a more ecological typical usage requires careful consideration for eye-related artifacts which are inevitable. We showed that fast and reliable decoding can be done with or without ocular-removal algorithm. Our results show that EEG and fNIRS are promising platforms for compact, wearable technologies that could be applied to decode attended spatial location and reveal contributions of specific brain regions during complex scene analysis

    Augmented classification for electrical coil winding defects

    Get PDF
    A green revolution has accelerated over the recent decades with a look to replace existing transportation power solutions through the adoption of greener electrical alternatives. In parallel the digitisation of manufacturing has enabled progress in the tracking and traceability of processes and improvements in fault detection and classification. This paper explores electrical machine manufacture and the challenges faced in identifying failures modes during this life cycle through the demonstration of state-of-the-art machine vision methods for the classification of electrical coil winding defects. We demonstrate how recent generative adversarial networks can be used to augment training of these models to further improve their accuracy for this challenging task. Our approach utilises pre-processing and dimensionality reduction to boost performance of the model from a standard convolutional neural network (CNN) leading to a significant increase in accuracy

    Building body identities - exploring the world of female bodybuilders

    Get PDF
    This thesis explores how female bodybuilders seek to develop and maintain a viable sense of self despite being stigmatized by the gendered foundations of what Erving Goffman (1983) refers to as the 'interaction order'; the unavoidable presentational context in which identities are forged during the course of social life. Placed in the context of an overview of the historical treatment of women's bodies, and a concern with the development of bodybuilding as a specific form of body modification, the research draws upon a unique two year ethnographic study based in the South of England, complemented by interviews with twenty-six female bodybuilders, all of whom live in the U.K. By mapping these extraordinary women's lives, the research illuminates the pivotal spaces and essential lived experiences that make up the female bodybuilder. Whilst the women appear to be embarking on an 'empowering' radical body project for themselves, the consequences of their activity remains culturally ambivalent. This research exposes the 'Janus-faced' nature of female bodybuilding, exploring the ways in which the women negotiate, accommodate and resist pressures to engage in more orthodox and feminine activities and appearances

    Image classification over unknown and anomalous domains

    Get PDF
    A longstanding goal in computer vision research is to develop methods that are simultaneously applicable to a broad range of prediction problems. In contrast to this, models often perform best when they are specialized to some task or data type. This thesis investigates the challenges of learning models that generalize well over multiple unknown or anomalous modes and domains in data, and presents new solutions for learning robustly in this setting. Initial investigations focus on normalization for distributions that contain multiple sources (e.g. images in different styles like cartoons or photos). Experiments demonstrate the extent to which existing modules, batch normalization in particular, struggle with such heterogeneous data, and a new solution is proposed that can better handle data from multiple visual modes, using differing sample statistics for each. While ideas to counter the overspecialization of models have been formulated in sub-disciplines of transfer learning, e.g. multi-domain and multi-task learning, these usually rely on the existence of meta information, such as task or domain labels. Relaxing this assumption gives rise to a new transfer learning setting, called latent domain learning in this thesis, in which training and inference are carried out over data from multiple visual domains, without domain-level annotations. Customized solutions are required for this, as the performance of standard models degrades: a new data augmentation technique that interpolates between latent domains in an unsupervised way is presented, alongside a dedicated module that sparsely accounts for hidden domains in data, without requiring domain labels to do so. In addition, the thesis studies the problem of classifying previously unseen or anomalous modes in data, a fundamental problem in one-class learning, and anomaly detection in particular. While recent ideas have been focused on developing self-supervised solutions for the one-class setting, in this thesis new methods based on transfer learning are formulated. Extensive experimental evidence demonstrates that a transfer-based perspective benefits new problems that have recently been proposed in anomaly detection literature, in particular challenging semantic detection tasks

    Compatibility and challenges in machine learning approach for structural crack assessment

    Get PDF
    Structural health monitoring and assessment (SHMA) is exceptionally essential for preserving and sustaining any mechanical structure’s service life. A successful assessment should provide reliable and resolute information to maintain the continuous performance of the structure. This information can effectively determine crack progression and its overall impact on the structural operation. However, the available sensing techniques and methods for performing SHMA generate raw measurements that require significant data processing before making any valuable predictions. Machine learning (ML) algorithms (supervised and unsupervised learning) have been extensively used for such data processing. These algorithms extract damage-sensitive features from the raw data to identify structural conditions and performance. As per the available published literature, the extraction of these features has been quite random and used by academic researchers without a suitability justification. In this paper, a comprehensive literature review is performed to emphasise the influence of damage-sensitive features on ML algorithms. The selection and suitability of these features are critically reviewed while processing raw data obtained from different materials (metals, composites and polymers). It has been found that an accurate crack prediction is only possible if the selection of damage-sensitive features and ML algorithms is performed based on available raw data and structure material type. This paper also highlights the current challenges and limitations during the mentioned sections

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury
    • …
    corecore