401 research outputs found

    3D Face Synthesis with KINECT

    Get PDF
    This work describes the process of face synthesis by image morphing from less expensive 3D sensors such as KINECT that are prone to sensor noise. Its main aim is to create a useful face database for future face recognition studies.Peer reviewe

    Mean value coordinates–based caricature and expression synthesis

    Get PDF
    We present a novel method for caricature synthesis based on mean value coordinates (MVC). Our method can be applied to any single frontal face image to learn a specified caricature face pair for frontal and 3D caricature synthesis. This technique only requires one or a small number of exemplar pairs and a natural frontal face image training set, while the system can transfer the style of the exemplar pair across individuals. Further exaggeration can be fulfilled in a controllable way. Our method is further applied to facial expression transfer, interpolation, and exaggeration, which are applications of expression editing. Additionally, we have extended our approach to 3D caricature synthesis based on the 3D version of MVC. With experiments we demonstrate that the transferred expressions are credible and the resulting caricatures can be characterized and recognized

    THREE DIMENSIONAL MODELING AND ANIMATION OF FACIAL EXPRESSIONS

    Get PDF
    Facial expression and animation are important aspects of the 3D environment featuring human characters. These animations are frequently used in many kinds of applications and there have been many efforts to increase the realism. Three aspects are still stimulating active research: the detailed subtle facial expressions, the process of rigging a face, and the transfer of an expression from one person to another. This dissertation focuses on the above three aspects. A system for freely designing and creating detailed, dynamic, and animated facial expressions is developed. The presented pattern functions produce detailed and animated facial expressions. The system produces realistic results with fast performance, and allows users to directly manipulate it and see immediate results. Two unique methods for generating real-time, vivid, and animated tears have been developed and implemented. One method is for generating a teardrop that continually changes its shape as the tear drips down the face. The other is for generating a shedding tear, which is a kind of tear that seamlessly connects with the skin as it flows along the surface of the face, but remains an individual object. The methods both broaden CG and increase the realism of facial expressions. A new method to automatically set the bones on facial/head models to speed up the rigging process of a human face is also developed. To accomplish this, vertices that describe the face/head as well as relationships between each part of the face/head are grouped. The average distance between pairs of vertices is used to place the head bones. To set the bones in the face with multi-density, the mean value of the vertices in a group is measured. The time saved with this method is significant. A novel method to produce realistic expressions and animations by transferring an existing expression to a new facial model is developed. The approach is to transform the source model into the target model, which then has the same topology as the source model. The displacement vectors are calculated. Each vertex in the source model is mapped to the target model. The spatial relationships of each mapped vertex are constrained

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    A New 3D Tool for Planning Plastic Surgery

    Get PDF
    Face plastic surgery (PS) plays a major role in today medicine. Both for reconstructive and cosmetic surgery, achieving harmony of facial features is an important, if not the major goal. Several systems have been proposed for presenting to patient and surgeon possible outcomes of the surgical procedure. In this paper, we present a new 3D system able to automatically suggest, for selected facial features as nose, chin, etc, shapes that aesthetically match the patient's face. The basic idea is suggesting shape changes aimed to approach similar but more harmonious faces. To this goal, our system compares the 3D scan of the patient with a database of scans of harmonious faces, excluding the feature to be corrected. Then, the corresponding features of the k most similar harmonious faces, as well as their average, are suitably pasted onto the patient's face, producing k+1 aesthetically effective surgery simulations. The system has been fully implemented and tested. To demonstrate the system, a 3D database of harmonious faces has been collected and a number of PS treatments have been simulated. The ratings of the outcomes of the simulations, provided by panels of human judges, show that the system and the underlying idea are effectiv

    Animation of Hand-drawn Faces using Machine Learning

    Get PDF
    Today's research in artificial vision has brought us new and exciting possibilities for the production and analysis of multimedia content. Pose estimation is an artificial vision technology that detects and identifies a human body's position and orientation within a picture or video. It locates key points on the bodies, and uses them to create three-dimensional models. In digital animation, pose estimation has paved the way for new visual effects and 3D renderings. By detecting human movements, it is now possible to create fluid realistic animations from still images. This bachelor thesis discusses the development of a pose estimation based program that is able to animate hand-drawn faces -- in particular the caricatured faces in Papiri di Laurea -- using machine learning and image manipulation. Working off of existing techniques for motion capture and 3D animation and making use of existing computer vision libraries like \textit{OpenCV} or \textit{dlib}, the project gave a satisfying result in the form of a short video of a hand-drawn caricatured figure that assumes the facial expressions fed to the program through an input video. The \textit{First Order Motion Model} was used to create this facial animation. It is a model based on the idea of transferring the movement detected from a source video to an image. %This model works best on close-ups of faces; the larger the background, the more the image gets distorted in the background. Possible future developments could include the creation of a website: the user loads their drawing and a video of themselves to get a gif version of their papiro. This could make for a new feature to add to portraits and caricatures, and more specifically to this thesis, a new way to celebrate graduates in Padova.Today's research in artificial vision has brought us new and exciting possibilities for the production and analysis of multimedia content. Pose estimation is an artificial vision technology that detects and identifies a human body's position and orientation within a picture or video. It locates key points on the bodies, and uses them to create three-dimensional models. In digital animation, pose estimation has paved the way for new visual effects and 3D renderings. By detecting human movements, it is now possible to create fluid realistic animations from still images. This bachelor thesis discusses the development of a pose estimation based program that is able to animate hand-drawn faces -- in particular the caricatured faces in Papiri di Laurea -- using machine learning and image manipulation. Working off of existing techniques for motion capture and 3D animation and making use of existing computer vision libraries like \textit{OpenCV} or \textit{dlib}, the project gave a satisfying result in the form of a short video of a hand-drawn caricatured figure that assumes the facial expressions fed to the program through an input video. The \textit{First Order Motion Model} was used to create this facial animation. It is a model based on the idea of transferring the movement detected from a source video to an image. %This model works best on close-ups of faces; the larger the background, the more the image gets distorted in the background. Possible future developments could include the creation of a website: the user loads their drawing and a video of themselves to get a gif version of their papiro. This could make for a new feature to add to portraits and caricatures, and more specifically to this thesis, a new way to celebrate graduates in Padova
    • …
    corecore