122 research outputs found

    High-accuracy patternless calibration of multiple 3D LiDARs for autonomous vehicles

    Get PDF
    This article proposes a new method for estimating the extrinsic calibration parameters between any pair of multibeam LiDAR sensors on a vehicle. Unlike many state-of-the-art works, this method does not use any calibration pattern or reflective marks placed in the environment to perform the calibration; in addition, the sensors do not need to have overlapping fields of view. An iterative closest point (ICP)-based process is used to determine the values of the calibration parameters, resulting in better convergence and improved accuracy. Furthermore, a setup based on the car learning to act (CARLA) simulator is introduced to evaluate the approach, enabling quantitative assessment with ground-truth data. The results show an accuracy comparable with other approaches that require more complex procedures and have a more restricted range of applicable setups. This work also provides qualitative results on a real setup, where the alignment between the different point clouds can be visually checked. The open-source code is available at https://github.com/midemig/pcd_calib .This work was supported in part by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M ("Fostering Young Doctors Research," APBI-CM-UC3M) in the context of the V PRICIT (Research and Technological Innovation Regional Program); and in part by the Spanish Government through Grants ID2021-128327OA-I00 and TED2021-129374A-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    External multi-modal imaging sensor calibration for sensor fusion: A review

    Get PDF
    Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to this growing field by examining recent research on multi-modal imaging sensor calibration and proposing future research directions. The literature review comprehensively explains the various characteristics and conditions of different multi-modal external calibration methods, including traditional motion-based calibration and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to guide future research directions. Future research should focus primarily on the capability of online targetless calibration and systematic multi-modal sensor calibration.Ministerio de Ciencia, Innovación y Universidades | Ref. PID2019-108816RB-I0
    corecore