45 research outputs found

    Development of pericardial fat count images using a combination of three different deep-learning models

    Full text link
    Rationale and Objectives: Pericardial fat (PF), the thoracic visceral fat surrounding the heart, promotes the development of coronary artery disease by inducing inflammation of the coronary arteries. For evaluating PF, this study aimed to generate pericardial fat count images (PFCIs) from chest radiographs (CXRs) using a dedicated deep-learning model. Materials and Methods: The data of 269 consecutive patients who underwent coronary computed tomography (CT) were reviewed. Patients with metal implants, pleural effusion, history of thoracic surgery, or that of malignancy were excluded. Thus, the data of 191 patients were used. PFCIs were generated from the projection of three-dimensional CT images, where fat accumulation was represented by a high pixel value. Three different deep-learning models, including CycleGAN, were combined in the proposed method to generate PFCIs from CXRs. A single CycleGAN-based model was used to generate PFCIs from CXRs for comparison with the proposed method. To evaluate the image quality of the generated PFCIs, structural similarity index measure (SSIM), mean squared error (MSE), and mean absolute error (MAE) of (i) the PFCI generated using the proposed method and (ii) the PFCI generated using the single model were compared. Results: The mean SSIM, MSE, and MAE were as follows: 0.856, 0.0128, and 0.0357, respectively, for the proposed model; and 0.762, 0.0198, and 0.0504, respectively, for the single CycleGAN-based model. Conclusion: PFCIs generated from CXRs with the proposed model showed better performance than those with the single model. PFCI evaluation without CT may be possible with the proposed method

    Artificial intelligence based automatic quantification of epicardial adipose tissue suitable for large scale population studies

    Get PDF
    To develop a fully automatic model capable of reliably quantifying epicardial adipose tissue (EAT) volumes and attenuation in large scale population studies to investigate their relation to markers of cardiometabolic risk. Non-contrast cardiac CT images from the SCAPIS study were used to train and test a convolutional neural network based model to quantify EAT by: segmenting the pericardium, suppressing noise-induced artifacts in the heart chambers, and, if image sets were incomplete, imputing missing EAT volumes. The model achieved a mean Dice coefficient of 0.90 when tested against expert manual segmentations on 25 image sets. Tested on 1400 image sets, the model successfully segmented 99.4% of the cases. Automatic imputation of missing EAT volumes had an error of less than 3.1% with up to 20% of the slices in image sets missing. The most important predictors of EAT volumes were weight and waist, while EAT attenuation was predicted mainly by EAT volume. A model with excellent performance, capable of fully automatic handling of the most common challenges in large scale EAT quantification has been developed. In studies of the importance of EAT in disease development, the strong co-variation with anthropometric measures needs to be carefully considered

    Statistiques de forme, de structure et de déformation à l'échelle d'une population pour l'étude de la fibrillation auriculaire

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia, characterized by chaotic electrical activation and unsynchronized contraction of the atria. This epidemic and its life-threatening complications and fast progression call for diagnosis and effective treatment as early as possible. Catheter ablation, an invasive procedure that establishes lesions to block the trigger points of AF and creates a barrier to the propagation of the arrhythmia, is an effective treatment for patients refractory to anti-arrhythmic drugs. However, the success rate of the first-time ablation may range from 30% to 75%, such that multiple ablation procedures may be recommended, and atrial mechanical function may be adversely affected. With evolving imaging and digital technologies, the objective of the study is to understand the underlying physiology of AF better and to provide tools to assist clinical decision-making. We analyze the correlations between recurrent arrhythmia and patient characteristics before ablation, including the left atrial shape extracted from computed tomography images. Non-invasive extraction of the anatomical structures of the heart is a crucial prerequisite. We first developed semi-automatic methods to segment the left atrium and the left atrial wall from images. Next, we achieved good segmentation results with a neural network model. Then, we studied markers of shape related to both global and local remodeling, and the quantification of adipose tissue, deploying diffeomorphometry and statistical analysis tools. Finally, we extended the work to the statistical analysis of temporal deformation. We proposed a symmetric reformulation of the pole ladder, which improves the numerical consistency and stability.La fibrillation auriculaire (FA) est le type d'arythmie cardiaque la plus commun, caractérisée par une activation électrique chaotique et une contraction non synchronisée des oreillettes. Cette maladie et ses complications potentiellement mortelles ainsi que sa progression rapide exigent de diagnostiquer et de mettre en place un traitement efficace dès que possible. L'ablation par cathéter, une procédure invasive qui établit des lésions pour bloquer les points de déclenchement de la FA et la propagation de l'arythmie, est un traitement efficace pour les patients réfractaires aux médicaments. Cependant, pour 30% des patients, la FA se redéveloppe, entraînant des interventions d'ablation multiples et affectant la fonction mécanique auriculaire. Le but de cette étude est de combiner l'expertise mathématique et informatique à la médecine afin de mieux comprendre la physiologie sous-jacente à la FA et de fournir des outils d'aide à la décision aux cliniciens. Nous analysons des corrélations entre l'arythmie récurrente et les caractéristiques du patient avant l'ablation, y compris la forme de l’oreillette gauche extraite d'images tomodensitométriques. Nous développons pour ce faire des méthodes semi-automatiques pour segmenter l’oreillette gauche et sa paroi à partir d’images. Ensuite, nous avons obtenu de bons résultats de segmentation avec un modèle de réseau de neurones artificiels. En outre, nous étudions des marqueurs de forme liés au remodelage global et local, et la quantification du tissu adipeux, en combinant une approche morphométrique difféomorphe à une analyse statistique. Enfin, le travail s’étend à l’analyse statistique de la déformation temporelle. Nous proposons une reformulation symétrique de l'échelle de perroquet qui améliore la cohérence et la stabilité numérique

    Quantitative Analysis of Cardiac Magnetic Resonance in Population Imaging

    Get PDF
    According to the World Health Organisation, cardiovascular diseases are the most prevalent cause of death worldwide and taking nearly 18 million lives each year. Identifying individuals at risk of cardiovascular diseases and ensuring they receive appropriate treatment in time can prevent premature deaths. Early quantitative assessment of cardiac function, structure, and motion support preventive care and early cardiovascular treatment. Therefore, fully automated analysis and interpretation of large-scale population-based cardiovascular magnetic resonance imaging studies become of high importance. This analysis helps to identify patterns and trends across population groups, and accordingly, reveal insights into key risk factors before diseases fully develop. To date, few large-scale population-level cardiac imaging studies have been conducted. UK Biobank (UKB) is currently the world’s most extensive prospective population study, which in addition to various biological and physical measurements, contain cardiovascular magnetic resonance (CMR) images to establish cardiovascular imaging-derived phenotypes. CMR is an essential element of multi-organ multi-modality imaging visits for patients in multiple dedicated UK Biobank imaging centres that will acquire and store imaging data from 100,000 participants by 2023. This thesis introduces CMR image analysis methods that appropriately scales up and can provide a fully automatic 3D analysis of the UKB CMR studies. Without manual user interactions, our pipeline performs end-to-end image analytics from multi-view cine CMR images all the way to anatomical and functional quantification. Besides, our pipelines provide 3D anatomical models of cardiac structures, which enable the extraction of detailed information of the morphodynamics of the cardiac structures for subsequent associations to genetic, omics, lifestyle habits, exposure information, and other available information in population imaging studies. We present the quantification results from 40,000 subjects of the UK Biobank at 50 time-frames, i.e. two million image volumes

    Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review

    Full text link
    In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section

    Perspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy

    Get PDF
    nuclear medicine; diagnostic radiolog

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI
    corecore