4,576 research outputs found

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    OSHI - Open Source Hybrid IP/SDN networking (and its emulation on Mininet and on distributed SDN testbeds)

    Full text link
    The introduction of SDN in IP backbones requires the coexistence of regular IP forwarding and SDN based forwarding. The former is typically applied to best effort Internet traffic, the latter can be used for different types of advanced services (VPNs, Virtual Leased Lines, Traffic Engineering...). In this paper we first introduce the architecture and the services of an "hybrid" IP/SDN networking scenario. Then we describe the design and implementation of an Open Source Hybrid IP/SDN (OSHI) node. It combines Quagga for OSPF routing and Open vSwitch for OpenFlow based switching on Linux. The availability of tools for experimental validation and performance evaluation of SDN solutions is fundamental for the evolution of SDN. We provide a set of open source tools that allow to facilitate the design of hybrid IP/SDN experimental networks, their deployment on Mininet or on distributed SDN research testbeds and their test. Finally, using the provided tools, we evaluate key performance aspects of the proposed solutions. The OSHI development and test environment is available in a VirtualBox VM image that can be downloaded.Comment: Final version (Last updated August, 2014

    Automatic configuration of routing control platforms in OpenFlow networks

    Get PDF
    RouteFlow provides a way to run routing control platforms (e. g. Quagga) in OpenFlow networks. One of the issues of RouteFlow is that an administrator needs to devote a lot of time (typically 7 hours for 28 switches) in manual configurations. We propose and demonstrate a framework that can automatically configure RouteFlow. For this demonstration, we use an emulated pan-European topology of 28 switches. In the demonstration, we stream a video clip from a server to a remote client, and show that the video clip reaches at the remote client within 4 minutes (including the configuration time). In addition, we show automatic configuration of RouteFlow using a GUI (Graphical User Interface)

    Research and Implement of an Algorithm for Physical Topology Automatic Discovery in Switched Ethernet

    Get PDF
    AbstractIn this paper, a novel practical algorithmic solution for automatic discovering the physical topology of switched Ethernet was proposed. Our algorithm collects standard SNMP MIB information that is widely supported in modern IP networks and then builds the physical topology of the active network. We described the relative definitions, system model and proved the correctness of the algorithm. Practically, the algorithm was implemented in our visualization network monitoring system. We also presented the main steps of the algorithm, core codes and running results on the lab network. The experimental results clearly validate our approach, demonstrating that our algorithm is simple and effective which can discover the accurate up-to-date physical network topology

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Coherent, automatic address resolution for vehicular ad hoc networks

    Get PDF
    Published in: Int. J. of Ad Hoc and Ubiquitous Computing, 2017 Vol.25, No.3, pp.163 - 179. DOI: 10.1504/IJAHUC.2017.10001935The interest in vehicular communications has increased notably. In this paper, the use of the address resolution (AR) procedures is studied for vehicular ad hoc networks (VANETs). We analyse the poor performance of AR transactions in such networks and we present a new proposal called coherent, automatic address resolution (CAAR). Our approach inhibits the use of AR transactions and instead increases the usefulness of routing signalling to automatically match the IP and MAC addresses. Through extensive simulations in realistic VANET scenarios using the Estinet simulator, we compare our proposal CAAR to classical AR and to another of our proposals that enhances AR for mobile wireless networks, called AR+. In addition, we present a performance evaluation of the behaviour of CAAR, AR and AR+ with unicast traffic of a reporting service for VANETs. Results show that CAAR outperforms the other two solutions in terms of packet losses and furthermore, it does not introduce additional overhead.Postprint (published version

    Deliverable DJRA1.3: Tool prototype for creating and stitching multiple network resources for virtual infrastructures

    Get PDF
    This document describes the prototype FEDERICA Slice Tool developed for the virtualization of network elements in FEDERICA and for creating and stitching network resources over this virtual infrastructure. An SNMP-based resource discovery prototype is also introduced as a new functionality to be integrated in the tool.The deliverable also presents aviability study for the use of traffic prioritization in the FEDERICA infrastructure and some network performance measurements on a real slice within FEDERICA.This document reports the final results of JRA1.2 Activity in the development of a tool prototype for creating sets ofvirtual resourcesinFEDERICA.The prototype goal is to simplify and automate part of the work for NOC.The tool may also serve,with different privileges, a FEDERICA user to operate on his/her slice. The tool described here was designed with the objective of providing an interactive application with a graphical interface to operate on resources for the NOC and the end users (researchers). The tool simplify the creation and configuration of resources in a slice and it is a mandatory step to ensure scalability of the NOC effort. It offers an interactive Graphical User Interface that translates the users’ actions to commands in the substrate (networknodesandV-nodes)andslice elements(VirtualMachines).User accounts may be created for the NOC and for researchers, each with specific privileges to enable different sets of capabilities. The NOC account has full access to all the resources in the substrate, while each user’account has full access only to the virtual resources in his/her slice. The tool has been developed using the Java programming language as Open Source code and relies on the open source Globus¼ Toolkit. Testing has been performed in a laboratory environment and on some FEDERICA substrate equipment (1switch, 2VMwareServers) in their standard configuration. For testing the router, web services and GUI an additional computer was used, using a public IP address.Postprint (published version
    • 

    corecore