799 research outputs found

    Extending the Finite Domain Solver of GNU Prolog

    No full text
    International audienceThis paper describes three significant extensions for the Finite Domain solver of GNU Prolog. First, the solver now supports negative integers. Second, the solver detects and prevents integer overflows from occurring. Third, the internal representation of sparse domains has been redesigned to overcome its current limitations. The preliminary performance evaluation shows a limited slowdown factor with respect to the initial solver. This factor is widely counterbalanced by the new possibilities and the robustness of the solver. Furthermore these results are preliminary and we propose some directions to limit this overhead

    Tagungsband zum 21. Kolloquium Programmiersprachen und Grundlagen der Programmierung

    Get PDF
    Das 21. Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS 2021) setzt eine traditionelle Reihe von Arbeitstagungen fort, die 1980 von den Forschungsgruppen der Professoren Friedrich L. Bauer (TU München), Klaus Indermark (RWTH Aachen) und Hans Langmaack(CAU Kiel) ins Leben gerufen wurde.Die Veranstaltung ist ein offenes Forum für alle interessierten deutschsprachigen Wissenschaftlerinnen und Wissenschaftler zum zwanglosen Austausch neuer Ideen und Ergebnisse aus den Forschungsbereichen Entwurf und Implementierung von Programmiersprachen sowie Grundlagen und Methodik des Programmierens. Dieser Tagungsband enthält die wissenschaftlichen Beiträge,die bei dem 21. Kolloquium dieser Tagungsreihe präsentiert wurden, welches vom 27. bis 29. September 2021 in Kiel stattfand und von der Arbeitsgruppe Programmiersprachen und Übersetzerkonstruktion der Christian-Albrechts-Universität zu Kiel organisiert wurde

    Constraint solving over multi-valued logics - application to digital circuits

    Get PDF
    Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP

    An introduction to interval-based constraint processing.

    Get PDF
    Constraint programming is often associated with solving problems over finite domains. Many applications in engineering, CAD and design, however, require solving problems over continuous (real-valued) domains. While simple constraint solvers can solve linear constraints with the inaccuracy of floating-point arithmetic, methods based on interval arithmetic allow exact (interval) solutions over a much wider range of problems. Applications of interval-based programming extend the range of solvable problems from non-linear polynomials up to those involving ordinary differential equations. In this text, we give an introduction to current approaches, methods and implementations of interval-based constraint programming and solving. Special care is taken to provide a uniform and consistent notation, since the literature in this field employs many seemingly different, but yet conceptually related, notations and terminology

    Feasible Form Parameter Design of Complex Ship Hull Form Geometry

    Get PDF
    This thesis introduces a new methodology for robust form parameter design of complex hull form geometry via constraint programming, automatic differentiation, interval arithmetic, and truncated hierarchical B- splines. To date, there has been no clearly stated methodology for assuring consistency of general (equality and inequality) constraints across an entire geometric form parameter ship hull design space. In contrast, the method to be given here can be used to produce guaranteed narrowing of the design space, such that infeasible portions are eliminated. Furthermore, we can guarantee that any set of form parameters generated by our method will be self consistent. It is for this reason that we use the title feasible form parameter design. In form parameter design, a design space is represented by a tuple of design parameters which are extended in each design space dimension. In this representation, a single feasible design is a consistent set of real valued parameters, one for every component of the design space tuple. Using the methodology to be given here, we pick out designs which consist of consistent parameters, narrowed to any desired precision up to that of the machine, even for equality constraints. Furthermore, the method is developed to enable the generation of complex hull forms using an extension of the basic rules idea to allow for automated generation of rules networks, plus the use of the truncated hierarchical B-splines, a wavelet-adaptive extension of standard B-splines and hierarchical B-splines. The adaptive resolution methods are employed in order to allow an automated program the freedom to generate complex B-spline representations of the geometry in a robust manner across multiple levels of detail. Thus two complementary objectives are pursued: ensuring feasible starting sets of form parameters, and enabling the generation of complex hull form geometry

    Intelligent Business Process Optimization for the Service Industry

    Get PDF
    The company\u27s sustainable competitive advantage derives from its capacity to create value for customers and to adapt the operational practices to changing situations. Business processes are the heart of each company. Therefore process excellence has become a key issue. This book introduces a novel approach focusing on the autonomous optimization of business processes by applying sophisticated machine learning techniques such as Relational Reinforcement Learning and Particle Swarm Optimization
    • …
    corecore