158 research outputs found

    Process development for automated solar cell and module production. Task 4: Automated array assembly

    Get PDF
    A process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use was developed. The process sequence was then critically analyzed from a technical and economic standpoint to determine the technological readiness of certain process steps for implementation. The steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect, both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development

    A three-axis accelerometer for measuring heart wall motion

    Get PDF
    This thesis presents the work carried out in the design, simulation, fabrication and testing of miniaturised three-axis accelerometers. The work was carried out at the Faculty of Science and Engineering at Vestfold University College (Tønsberg, Norway), the MIcroSystems Engineering Centre (MISEC) at Heriot-Watt University and in collaboration with the Interventional Centre at Rikshospitalet University Hospital (Oslo, Norway). The accelerometers presented in this thesis were produced to be stitched to the surface of human hearts. In doing so they are used to measure the heart wall motion of patients that have just undergone heart bypass surgery. Results from studies carried out are presented and prove the concept of using such sensors for the detection of problems that can lead to the failure of heart bypasses. These studies were made possible using commercially available MEMS (MicroElectroMechanical Systems) three-axis accelerometers. However, the overall size of these sensors does not meet the requirements deemed necessary by the medical team (2(W) 2(H) 5(L) mm3) and fabrication activities were necessary to produce custom-made sensors. Design verification and performance modelling were carried out using Finite Element Analysis (FEA) and these results are presented alongside relevant analytical calculations. For fabrication, accelerometer designs were submitted to three foundry processes during the course of the work. The designs utilise the piezoresistive effect for the acceleration sensing and fabrication was carried out by bulk micromachining. Results of the characterisaton of the sensors are presente

    Proceedings of the Low-Cost Solar Array Wafering Workshop

    Get PDF
    The technology and economics of silicon ingot wafering for low cost solar arrays were discussed. Fixed and free abrasive sawing wire, ID, and multiblade sawing, materials, mechanisms, characterization, and innovative concepts were considered
    corecore