5,153 research outputs found

    A second derivative SQP method: local convergence

    Get PDF
    In [19], we gave global convergence results for a second-derivative SQP method for minimizing the exact ℓ1-merit function for a fixed value of the penalty parameter. To establish this result, we used the properties of the so-called Cauchy step, which was itself computed from the so-called predictor step. In addition, we allowed for the computation of a variety of (optional) SQP steps that were intended to improve the efficiency of the algorithm. \ud \ud Although we established global convergence of the algorithm, we did not discuss certain aspects that are critical when developing software capable of solving general optimization problems. In particular, we must have strategies for updating the penalty parameter and better techniques for defining the positive-definite matrix Bk used in computing the predictor step. In this paper we address both of these issues. We consider two techniques for defining the positive-definite matrix Bk—a simple diagonal approximation and a more sophisticated limited-memory BFGS update. We also analyze a strategy for updating the penalty paramter based on approximately minimizing the ℓ1-penalty function over a sequence of increasing values of the penalty parameter.\ud \ud Algorithms based on exact penalty functions have certain desirable properties. To be practical, however, these algorithms must be guaranteed to avoid the so-called Maratos effect. We show that a nonmonotone varient of our algorithm avoids this phenomenon and, therefore, results in asymptotically superlinear local convergence; this is verified by preliminary numerical results on the Hock and Shittkowski test set

    Solution of Linear Programming Problems using a Neural Network with Non-Linear Feedback

    Get PDF
    This paper presents a recurrent neural circuit for solving linear programming problems. The objective is to minimize a linear cost function subject to linear constraints. The proposed circuit employs non-linear feedback, in the form of unipolar comparators, to introduce transcendental terms in the energy function ensuring fast convergence to the solution. The proof of validity of the energy function is also provided. The hardware complexity of the proposed circuit compares favorably with other proposed circuits for the same task. PSPICE simulation results are presented for a chosen optimization problem and are found to agree with the algebraic solution. Hardware test results for a 2–variable problem further serve to strengthen the proposed theory

    Computational Methods for Nonlinear Systems Analysis With Applications in Mathematics and Engineering

    Get PDF
    An investigation into current methods and new approaches for solving systems of nonlinear equations was performed. Nontraditional methods for implementing arc-length type solvers were developed in search of a more robust capability for solving general systems of nonlinear algebraic equations. Processes for construction of parameterized curves representing the many possible solutions to systems of equations versus finding single or point solutions were established. A procedure based on these methods was then developed to identify static equilibrium states for solutions to multi-body-dynamic systems. This methodology provided for a pictorial of the overall solution to a given system, which demonstrated the possibility of multiple candidate equilibrium states for which a procedure for selection of the proper state was proposed. Arc-length solvers were found to identify and more readily trace solution curves as compared to other solvers making such an approach practical. Comparison of proposed methods was made to existing methods found in the literature and commercial software with favorable results. Finally, means for parallel processing of the Jacobian matrix inherent to the arc-length and other nonlinear solvers were investigated, and an efficient approach for implementation was identified. Several case studies were performed to substantiate results. Commercial software was also used in some instances for additional results verification

    A methodology for robust optimization of low-thrust trajectories in multi-body environments

    Get PDF
    Issued as final reportThales Alenia Spac
    corecore