6,264 research outputs found

    Heart sounds:From animal to patient and Mhealth

    Get PDF

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging

    Get PDF
    The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination. Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function. When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed. With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR

    Subject index: Abstracts

    Get PDF

    Echocardiographic Stratification of Acute Coronary Syndrome

    Get PDF

    Three-dimensional echocardiography and 2D-3D speckle tracking imaging in chronic pulmonary hypertension. diagnostic accuracy in detecting hemodynamic signs of RV failure

    Get PDF
    Background and objective. Our aim was to compare three-dimensional (3D) and 2D and 3D speckle tracking (2D-STE, 3D-STE) echocardiographic parameters with conventional right ventricular (RV) indexes in patients with chronic pulmonary hypertension (PH), and investigate whether these techniques could result in better correlation with hemodynamic variables indicative of heart failure. Methods. Seventy-three adult patients (mean age, 53±13 years; 44% male) with chronic PH of different etiologies were studied by echocardiography and cardiac catheterization (25 precapillary PH from pulmonary arterial hypertension, 23 obstructive pulmonary heart disease, and 23 postcapillary PH from mitral regurgitation). Thirty healthy subjects (mean age, 54±15 years; 43% male) served as controls. Standard 2D measurements (RV-FAC -fractional area change-, TAPSE -tricuspid annular plane systolic excursion-) and mitral and tricuspid tissue Doppler annular velocities were obtained. RV 3D volumes, and global and regional ejection fraction (3D-RVEF) were determined. RV strains were calculated by 2D-STE and 3D-STE. Results. RV 3D global-free-wall longitudinal strain (3DGFW-RVLS), 2D global-free-wall longitudinal strain (GFW-RVLS), apical-free-wall longitudinal strain (AFW-RVLS), basal-free-wall longitudinal strain (BFW-RVLS), and 3D-RVEF were lower in patients with pre-capillary PH (p<0.0001) and post-capillary PH (p<0.01) compared to controls. 3DGFW-RVLS (HR 4.6, 95% CI 2.79-8.38, p=0.004) and 3D-RVEF (HR 5.3, 95% CI 2.85-9.89, p=0.002) were independent predictors of mortality. ROC curves showed that the thresholds offering an adequate compromise between sensitivity and specificity for detecting hemodynamic signs of RV failure were 39% for 3D-RVEF (AUC 0.89), -17% for 3DGFW-RVLS (AUC 0.88), -18% for GFW-RVLS (AUC 0.88), -16% for AFW-RVLS (AUC 0.85), 16mm for TAPSE (AUC 0.67), and 38% for RV-FAC (AUC 0.62). Conclusions. In chronic PH, 3D, 2D-STE and 3D-STE parameters indicate global and regional RV dysfunction that is associated with RV failure hemodynamics better than conventional echo indices

    Subclinical left ventricular myocardial dysfunction in non-obstructive coronary artery disease

    Get PDF
    • …
    corecore