13,702 research outputs found

    Aeronautical Engineering: A special bibliography with indexes, supplement 64, December 1975

    Get PDF
    This bibliography lists 288 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1975

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974

    Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating

    Full text link
    InGaAs/InP single-photon avalanche diodes (SPADs) working in the regime of GHz clock rates are crucial components for the high-speed quantum key distribution (QKD). We have developed for the first time a compact, stable and user-friendly tabletop InGaAs/InP single-photon detector system operating at a 1.25 GHz gate rate that fully integrates functions for controlling and optimizing SPAD performance. We characterize the key parameters of the detector system and test the long-term stability of the system for continuous operation of 75 hours. The detector system can substantially enhance QKD performance and our present work paves the way for practical high-speed QKD applications.Comment: 11 pages, 6 figures. Accepted for publication in Review of Scientific Instrument

    Trick or Heat? Manipulating Critical Temperature-Based Control Systems Using Rectification Attacks

    Full text link
    Temperature sensing and control systems are widely used in the closed-loop control of critical processes such as maintaining the thermal stability of patients, or in alarm systems for detecting temperature-related hazards. However, the security of these systems has yet to be completely explored, leaving potential attack surfaces that can be exploited to take control over critical systems. In this paper we investigate the reliability of temperature-based control systems from a security and safety perspective. We show how unexpected consequences and safety risks can be induced by physical-level attacks on analog temperature sensing components. For instance, we demonstrate that an adversary could remotely manipulate the temperature sensor measurements of an infant incubator to cause potential safety issues, without tampering with the victim system or triggering automatic temperature alarms. This attack exploits the unintended rectification effect that can be induced in operational and instrumentation amplifiers to control the sensor output, tricking the internal control loop of the victim system to heat up or cool down. Furthermore, we show how the exploit of this hardware-level vulnerability could affect different classes of analog sensors that share similar signal conditioning processes. Our experimental results indicate that conventional defenses commonly deployed in these systems are not sufficient to mitigate the threat, so we propose a prototype design of a low-cost anomaly detector for critical applications to ensure the integrity of temperature sensor signals.Comment: Accepted at the ACM Conference on Computer and Communications Security (CCS), 201

    Proceedings of the 2nd Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems

    Get PDF
    The proceedings of a workshop held at the University of Tennessee Space Institute, Tullahoma, Tennessee, March 28-30, 1978, are reported. The workshop was jointly sponsored by NASA, NOAA, FAA, and brought together many disciplines of the aviation communities in round table discussions. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interactions of the atmosphere with aviation systems, as the better definition and implementation of services to operators, and as the collection and interpretation of data for establishing operational criteria, relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities

    Laboratory test methodology for evaluating the effects of electromagnetic disturbances on fault-tolerant control systems

    Get PDF
    Control systems for advanced aircraft, especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met for adverse as well as nominal operating conditions. Adverse conditions can result from electromagnetic disturbances caused by lightning, high energy radio frequency transmitters, and nuclear electromagnetic pulses. Tools and techniques must be developed to verify the integrity of the control system in adverse operating conditions. The most difficult and illusive perturbations to computer based control systems caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. A methodology is presented for performing upset tests on a multichannel control system and considerations are discussed for the design of upset tests to be conducted in the lab on fault tolerant control systems operating in a closed loop with a simulated plant

    Aeronautical Engineering: A special bibliography with indexes, supplement 55

    Get PDF
    This bibliography lists 260 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1975
    corecore