3,313 research outputs found

    Associating Facial Expressions and Upper-Body Gestures with Learning Tasks for Enhancing Intelligent Tutoring Systems

    Get PDF
    Learning involves a substantial amount of cognitive, social and emotional states. Therefore, recognizing and understanding these states in the context of learning is key in designing informed interventions and addressing the needs of the individual student to provide personalized education. In this paper, we explore the automatic detection of learner’s nonverbal behaviors involving hand-over-face gestures, head and eye movements and emotions via facial expressions during learning. The proposed computer vision-based behavior monitoring method uses a low-cost webcam and can easily be integrated with modern tutoring technologies. We investigate these behaviors in-depth over time in a classroom session of 40 minutes involving reading and problem-solving exercises. The exercises in the sessions are divided into three categories: an easy, medium and difficult topic within the context of undergraduate computer science. We found that there is a significant increase in head and eye movements as time progresses, as well as with the increase of difficulty level. We demonstrated that there is a considerable occurrence of hand-over-face gestures (on average 21.35%) during the 40 minutes session and is unexplored in the education domain. We propose a novel deep learning approach for automatic detection of hand-over-face gestures in images with a classification accuracy of 86.87%. There is a prominent increase in hand-over-face gestures when the difficulty level of the given exercise increases. The hand-over-face gestures occur more frequently during problem-solving (easy 23.79%, medium 19.84% and difficult 30.46%) exercises in comparison to reading (easy 16.20%, medium 20.06% and difficult 20.18%)

    Characterizing Productive Perseverance Using Sensor-Free Detectors of Student Knowledge, Behavior, and Affect

    Get PDF
    Failure is a necessary step in the process of learning. For this reason, there has been a myriad of research dedicated to the study of student perseverance in the presence of failure, leading to several commonly-cited theories and frameworks to characterize productive and unproductive representations of the construct of persistence. While researchers are in agreement that it is important for students to persist when struggling to learn new material, there can be both positive and negative aspects of persistence. What is it, then, that separates productive from unproductive persistence? The purpose of this work is to address this question through the development, extension, and study of data-driven models of student affect, behavior, and knowledge. The increased adoption of computer-based learning platforms in real classrooms has led to unique opportunities to study student learning at both fine levels of granularity and longitudinally at scale. Prior work has leveraged machine learning methods, existing learning theory, and previous education research to explore various aspects of student learning. These include the development of sensor-free detectors that utilize only the student interaction data collected through such learning platforms. Building off of the considerable amount of prior research, this work employs state-of-the-art machine learning methods in conjunction with the large scale granular data collected by computer-based learning platforms in alignment with three goals. First, this work focuses on the development of student models that study learning through the use of advancements in student modeling and deep learning methodologies. Second, this dissertation explores the development of tools that incorporate such models to support teachers in taking action in real classrooms to promote productive approaches to learning. Finally, this work aims to complete the loop in utilizing these detector models to better understand the underlying constructs that are being measured through their application and their connection to productive perseverance and commonly-observed learning outcomes

    Automatic Sensor-free Affect Detection: A Systematic Literature Review

    Full text link
    Emotions and other affective states play a pivotal role in cognition and, consequently, the learning process. It is well-established that computer-based learning environments (CBLEs) that can detect and adapt to students' affective states can enhance learning outcomes. However, practical constraints often pose challenges to the deployment of sensor-based affect detection in CBLEs, particularly for large-scale or long-term applications. As a result, sensor-free affect detection, which exclusively relies on logs of students' interactions with CBLEs, emerges as a compelling alternative. This paper provides a comprehensive literature review on sensor-free affect detection. It delves into the most frequently identified affective states, the methodologies and techniques employed for sensor development, the defining attributes of CBLEs and data samples, as well as key research trends. Despite the field's evident maturity, demonstrated by the consistent performance of the models and the application of advanced machine learning techniques, there is ample scope for future research. Potential areas for further exploration include enhancing the performance of sensor-free detection models, amassing more samples of underrepresented emotions, and identifying additional emotions. There is also a need to refine model development practices and methods. This could involve comparing the accuracy of various data collection techniques, determining the optimal granularity of duration, establishing a shared database of action logs and emotion labels, and making the source code of these models publicly accessible. Future research should also prioritize the integration of models into CBLEs for real-time detection, the provision of meaningful interventions based on detected emotions, and a deeper understanding of the impact of emotions on learning

    Integrating knowledge tracing and item response theory: A tale of two frameworks

    Get PDF
    Traditionally, the assessment and learning science commu-nities rely on different paradigms to model student performance. The assessment community uses Item Response Theory which allows modeling different student abilities and problem difficulties, while the learning science community uses Knowledge Tracing, which captures skill acquisition. These two paradigms are complementary - IRT cannot be used to model student learning, while Knowledge Tracing assumes all students and problems are the same. Recently, two highly related models based on a principled synthesis of IRT and Knowledge Tracing were introduced. However, these two models were evaluated on different data sets, using different evaluation metrics and with different ways of splitting the data into training and testing sets. In this paper we reconcile the models' results by presenting a unified view of the two models, and by evaluating the models under a common evaluation metric. We find that both models are equivalent and only differ in their training procedure. Our results show that the combined IRT and Knowledge Tracing models offer the best of assessment and learning sciences - high prediction accuracy like the IRT model, and the ability to model student learning like Knowledge Tracing

    Student Modeling and Analysis in Adaptive Instructional Systems

    Get PDF
    There is a growing interest in developing and implementing adaptive instructional systems to improve, automate, and personalize student education. A necessary part of any such adaptive instructional system is a student model used to predict or analyze learner behavior and inform adaptation. To help inform researchers in this area, this paper presents a state-of-the-art review of 11 years of research (2010-2021) in student modeling, focusing on learner characteristics, learning indicators, and foundational aspects of dissimilar models. We mainly emphasize increased prediction accuracy when using multidimensional learner data to create multimodal models in real-world adaptive instructional systems. In addition, we discuss challenges inherent in real-world multimodal modeling, such as uncontrolled data collection environments leading to noisy data and data sync issues. Finally, we reinforce our findings and conclusions through an industry case study of an adaptive instructional system. In our study, we verify that adding multiple data modalities increases our model prediction accuracy from 53.3% to 69%. At the same time, the challenges encountered with our real-world case study, including uncontrolled data collection environment with inevitably noisy data, calls for synchronization and noise control strategies for data quality and usability

    Computer detection of spatial visualization in a location-based task

    Get PDF
    An untapped area of productivity gains hinges on automatic detection of user cognitive characteristics. One such characteristic, spatial visualization ability, relates to users’ computer performance. In this dissertation, we describe a novel, behavior-based, spatial visualization detection technique. The technique does not depend on sensors or knowledge of the environment and can be adopted on generic computers. In a Census Bureau location-based address verification task, detection rates exceeded 80% and approached 90%
    • …
    corecore