456 research outputs found

    Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis

    Full text link
    In patients with coronary artery stenoses of intermediate severity, the functional significance needs to be determined. Fractional flow reserve (FFR) measurement, performed during invasive coronary angiography (ICA), is most often used in clinical practice. To reduce the number of ICA procedures, we present a method for automatic identification of patients with functionally significant coronary artery stenoses, employing deep learning analysis of the left ventricle (LV) myocardium in rest coronary CT angiography (CCTA). The study includes consecutively acquired CCTA scans of 166 patients with FFR measurements. To identify patients with a functionally significant coronary artery stenosis, analysis is performed in several stages. First, the LV myocardium is segmented using a multiscale convolutional neural network (CNN). To characterize the segmented LV myocardium, it is subsequently encoded using unsupervised convolutional autoencoder (CAE). Thereafter, patients are classified according to the presence of functionally significant stenosis using an SVM classifier based on the extracted and clustered encodings. Quantitative evaluation of LV myocardium segmentation in 20 images resulted in an average Dice coefficient of 0.91 and an average mean absolute distance between the segmented and reference LV boundaries of 0.7 mm. Classification of patients was evaluated in the remaining 126 CCTA scans in 50 10-fold cross-validation experiments and resulted in an area under the receiver operating characteristic curve of 0.74 +- 0.02. At sensitivity levels 0.60, 0.70 and 0.80, the corresponding specificity was 0.77, 0.71 and 0.59, respectively. The results demonstrate that automatic analysis of the LV myocardium in a single CCTA scan acquired at rest, without assessment of the anatomy of the coronary arteries, can be used to identify patients with functionally significant coronary artery stenosis.Comment: This paper was submitted in April 2017 and accepted in November 2017 for publication in Medical Image Analysis. Please cite as: Zreik et al., Medical Image Analysis, 2018, vol. 44, pp. 72-8

    In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography

    Get PDF
    The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD)

    A novel myocardium segmentation approach based on neutrosophic active contour model

    Get PDF
    Automatic delineation of the myocardium in echocardiography can assist ra- diologists to diagnosis heart problems. However, it is still challenging to distinguish myocardium from other tissue due to a low signal-to-noise ratio, low contrast, vague boundary, and speckle noise

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    An investigation into the limitations of myocardial perfusion imaging

    Get PDF
    Myocardial Perfusion Imaging (MPI) plays a very important role in the management of patients with suspected Coronary Artery Disease and its use has grown despite the shortcomings of the technique. Significant progress has been made in identifying the causes of these shortcomings and many solutions been suggested in the literature but the clinical sensitivity and specificity of the technique is still well below optimum. Monte Carlo Simulation is a very useful tool in identifying and guiding the understanding of the existing problems in MPI and this present study utilised this method to establish the basis of the simulations to be used and the way to analyse the results so that many of the causes of the attenuation defects, when using MPI, could be identified. This was achieved by investigating the effect that the different anatomical parts of the thorax have on the attenuation defects caused. A further aspect investigated was the impact that self-absorption in the heart has on these defects. The variability of these defects were further investigated by altering the position and orientation of the heart itself within the thorax and determining the effect it has on the attenuation defects caused. Results indicate that the attenuation caused is a very complicated process, that the self-absorption of the heart plays an extremely important role and the impact of the different positions and orientation of the heart inside the thorax are also significant. The distortion caused on the images by these factors was demonstrated by the intensity losses in the basal part and an over-estimation in the apical parts, which were clearly observable on the final clinical images, with the potential to affect clinical interpretation. Attenuation correction procedures using transmission sources, have been available for some time, but have not been adopted widely, amidst concern that they introduce additional artefacts. This study determined the effectiveness of these methods by establishing the level of correction obtained and whether additional artefacts were introduced. This included the effectiveness of the compensation achieved with the use of the latest commercially available comprehensive correction techniques. The technique investigated was “Flash3D" from Siemens providing transmission based attenuation correction, depth-dependent resolution recovery and scatter correction. The comparison between the defects and intensity losses predicted by the Monte Carlo Simulations and the corrections provided by this commercial correction technique revealed that solution is compensating almost entirely for these problems and therefore do provide substantial progress in overcoming the limitations of MPI. As a result of the improvements gained from applying these commercially available techniques and the accuracy established in this study for the mentioned technique it is strongly recommended that these new techniques be embraced by the wider Nuclear Medicine community so that the limitations in MPI can be reduced in clinical environment. Non-withstanding the above gains made there remains room for improvement by overcoming the of use transmission attenuation correction techniques by replacing them with emission based techniques. In this study two new related emission based attenuation correction techniques have been suggested and investigated and provide a promising prospect of overcoming these limitations

    Model-based Reconstruction of Myocardial Perfusion SPECT and PET Images

    Get PDF
    Myocardial perfusion imaging is an important noninvasive tool in the diagnosis and prognosis of coronary artery disease, the leading cause of death in the United States. Electrocardiographically (ECG) gated acquisition allows combined evaluation of perfusion and left ventricular function within a single study. However, the accuracy of perfusion quantification and functional analysis is reduced by a number of image degrading factors. Particularly, partial volume effects (PVE) resulting from finite spatial resolution cause activity spillover between tissue classes and blur region boundaries. High-resolution anatomical images, such as contrast CT or MRI, can be used for partial volume compensation (PVC), but they are generally not available in clinical practice. The objective of this research is to develop and evaluate a model-based reconstruction method for emission computed tomography applied to myocardial perfusion imaging to improve perfusion quantification and functional assessment without the presence of anatomical images. The idea is to model the left ventricle (LV) using a geometry model and an activity distribution model instead of modeling them using voxels. The geometry model parameterizes the endocardial and epicardial surfaces using a set of rays originating from the long axis of LV. The rays sample the surfaces cylindrically in the basal and mid-ventricular regions and spherically in the apex. The surfaces are obtained by interpolating the corresponding intersection points with the rays using a cubic-spline function. The activity distribution model divides the myocardium into segments similar to those used in standardized myocardial quantitative analysis. The model assumes uniform activity concentrations in the segments as well as the blood pool and body background. The method estimates the parameters of the geometry and activity models instead of the intensities of all voxels, which greatly reduces the number of unknowns to be estimated. The goal of model-based reconstruction method was to estimate the parameters that give the best match between the image generated by the model and the measured data. The input image is contaminated by noise, so the metric for the goodness of fit was a statistical criterion based on the likelihood, i.e., the probability that the image resulted from the given set of model parameters. The image generated by the model includes the effects of resolution and other image degrading factors. A shape constraint was also incorporated into the objective function to regularize the ill-posed reconstruction problem and increase the robustness to perfusion defects and noise. The model parameters were optimized by seeking the maximum of the objective function using a group-wise alternating scheme along with dedicated initial parameter estimation. The hypothesis underlying the work is that resulting geometry parameters produce an accurate segmentation of the LV while the activity parameters are PVE compensated representations of the true activities in the segments. The proposed method integrates prior knowledge about the targeted object and the imaging system into one framework and allows simultaneous LV segmentation and PVC. In the evaluation with simulated myocardial perfusion SPECT images, it improved accuracy and precision in delineating the myocardium in comparison with typical segmentation methods. In addition, it recovered the myocardial activity more effectively compared to deconvolution-based PVC, which also does not require coregistered anatomical images to define regions of interest

    Shape and appearance priors for level set-based left ventricle segmentation

    Get PDF

    Effect of contrast material injection protocol on first-pass myocardial perfusion assessed by dual-energy dual-layer computed tomography

    Get PDF
    Background: Dual-energy dual-layer computed tomography (CT) scanners can provide useful tools, such as iodine maps and virtual monochromatic images (VMI), for the evaluation of myocardial perfusion defects. Data about the influence of acquisition protocols and normal values are still lacking. Methods: Clinically indicated coronary CT-angiographies performed between January-October 2018 in a single university hospital with dual-energy dual-layer CT (DE-DLCT) and different injection protocols were retrospectively evaluated. The two protocols were: 35 mL in patients <80 kg and 0.5 mL/kg in patients >80 kg at 2.5 mL/sec (group A) or double contrast dose at 5 mL/sec (group B). Patients with coronary stenosis >50% were excluded. Regions of interest were manually drawn on 16 myocardial segments and iodine concentration was measured in mg/mL. Signal-to-noise, contrast-to-noise ratios (CNR) and image noise were measured on conventional images and VMI. Results: A total of 30 patients were included for each protocol. With iodine concentrations of 1.38 +/- 0.41 mg/mL for protocol A and 2.07 +/- 0.73 mg/mL for protocol B, the two groups were significantly different (P<0.001). No significant iodine concentration differences were found between the 16 segments (P=0.47 and P=0.09 for group A and B respectively), between basal, mid and apical segments for group A and B (P=0.28 and P=0.12 for group A and B respectively) and between wall regions for group A (P=0.06 on normalised data). In group B, iodine concentration was significantly different between three wall regions [highest values for the lateral wall, median =2.03 (1.06) mg/mL]. Post-hoc analysis showed highest contrast-to-noise and signal-to-noise in VMI at 40 eV (P<0.05). Conclusions: Iodine concentration in left ventricular myocardium of patients without significant coronary artery stenosis varied depending on the injection protocol and appeared more heterogeneous in different wall regions at faster injection rate and greater iodine load. Signal-to-noise and contrast-to-noise gradually improved when decreasing VMI energy, although at the expenses of higher noise, demonstrating the potential of DE-DLCT to enhance objective image quality
    corecore