3,960 research outputs found

    Attention and automation: New perspectives on mental underload and performance

    Get PDF
    There is considerable evidence in the ergonomics literature that automation can significantly reduce operator mental workload. Furthermore, reducing mental workload is not necessarily a good thing, particularly in cases where the level is already manageable. This raises the issue of mental underload, which can be at least as detrimental to performance as overload. However, although it is widely recognized that mental underload is detrimental to performance, there are very few attempts to explain why this may be the case. It is argued in this paper that, until the need for a human operator is completely eliminated, automation has psychological implications relevant in both theoretical and applied domains. The present paper reviews theories of attention, as well as the literature on mental workload and automation, to synthesize a new explanation for the effects of mental underload on performance. Malleable attentional resources theory proposes that attentional capacity shrinks to accommodate reductions in mental workload, and that this shrinkage is responsible for the underload effect. The theory is discussed with respect to the applied implications for ergonomics research

    Efficient and Robust Driver Fatigue Detection Framework Based on the Visual Analysis of Eye States

    Get PDF
    Fatigue detection based on vision is widely employed in vehicles due to its real-time and reliable detection results. With the coronavirus disease (COVID-19) outbreak, many proposed detection systems based on facial characteristics would be unreliable due to the face covering with the mask. In this paper, we propose a robust visual-based fatigue detection system for monitoring drivers, which is robust regarding the coverings of masks, changing illumination and head movement of drivers. Our system has three main modules: face key point alignment, fatigue feature extraction and fatigue measurement based on fused features. The innovative core techniques are described as follows: (1) a robust key point alignment algorithm by fusing global face information and regional eye information, (2) dynamic threshold methods to extract fatigue characteristics and (3) a stable fatigue measurement based on fusing percentage of eyelid closure (PERCLOS) and proportion of long closure duration blink (PLCDB). The excellent performance of our proposed algorithm and methods are verified in experiments. The experimental results show that our key point alignment algorithm is robust to different scenes, and the performance of our proposed fatigue measurement is more reliable due to the fusion of PERCLOS and PLCDB
    • …
    corecore