56 research outputs found

    Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts

    Get PDF
    In this paper, a forensic tool able to discriminate between original and forged regions in an image captured by a digital camera is presented. We make the assumption that the image is acquired using a Color Filter Array, and that tampering removes the artifacts due to the demosaicking algorithm. The proposed method is based on a new feature measuring the presence of demosaicking artifacts at a local level, and on a new statistical model allowing to derive the tampering probability of each 2 Ă— 2 image block without requiring to know a priori the position of the forged region. Experimental results on different cameras equipped with different demosaicking algorithms demonstrate both the validity of the theoretical model and the effectiveness of our schem

    An Overview on Image Forensics

    Get PDF
    The aim of this survey is to provide a comprehensive overview of the state of the art in the area of image forensics. These techniques have been designed to identify the source of a digital image or to determine whether the content is authentic or modified, without the knowledge of any prior information about the image under analysis (and thus are defined as passive). All these tools work by detecting the presence, the absence, or the incongruence of some traces intrinsically tied to the digital image by the acquisition device and by any other operation after its creation. The paper has been organized by classifying the tools according to the position in the history of the digital image in which the relative footprint is left: acquisition-based methods, coding-based methods, and editing-based schemes

    Reliable and Fast Forgery Detection using FINE GRAINED approach

    Get PDF
    Forensic science encompassing the recovery and investigation of material found in digital devices, often in relation to computer crime. A digital forensic investigation commonly consists of 3 stages: acquisition or imaging of exhibits, analysis, and reporting. Previously, it is able to detect tampered images at high accuracy based on some carefully designed mechanisms,localization of the tampered regions in a fake image still presents many challenges, especially when the type of tampering operation is unknown. Later on, necessary to integrate different forensic approaches in order to obtain better localization performance. However, several important issues have not been comprehensively studied, to improve/readjust proper forensic approaches, and to fuse the detection results of different forensic approaches to obtain good localization results. In this paper, we propose a framework to improve the performance of forgery localization via implementing tampering possibility maps along with fusion based technique. In the proposed framework, we first select and improve existing forensic approaches, i.e., copy-move forgery detector and statistical feature based approach, and then improve their results to obtain tampering possibility maps

    Detecting Image Brush Editing Using the Discarded Coefficients and Intentions

    Get PDF
    This paper describes a quick and simple method to detect brush editing in JPEG images. The novelty of the proposed method is based on detecting the discarded coefficients during the quantization of the image. Another novelty of this paper is the development of a subjective metric named intentions. The method directly analyzes the allegedly tampered image and generates a forgery mask indicating forgery evidence for each image block. The experiments show that our method works especially well in detecting brush strokes, and it works reasonably well with added captions and image splicing. However, the method is less effective detecting copy-moved and blurred regions. This means that our method can effectively contribute to implementing a complete imagetampering detection tool. The editing operations for which our method is less effective can be complemented with methods more adequate to detect them

    Digital video tamper detection based on multimodal fusion of residue features

    Get PDF

    Review on passive approaches for detecting image tampering

    Get PDF
    This paper defines the presently used methods and approaches in the domain of digital image forgery detection. A survey of a recent study is explored including an examination of the current techniques and passive approaches in detecting image tampering. This area of research is relatively new and only a few sources exist that directly relate to the detection of image forgeries. Passive, or blind, approaches for detecting image tampering are regarded as a new direction of research. In recent years, there has been significant work performed in this highly active area of research. Passive approaches do not depend on hidden data to detect image forgeries, but only utilize the statistics and/or content of the image in question to verify its genuineness. The specific types of forgery detection techniques are discussed below

    Machine learning based digital image forensics and steganalysis

    Get PDF
    The security and trustworthiness of digital images have become crucial issues due to the simplicity of malicious processing. Therefore, the research on image steganalysis (determining if a given image has secret information hidden inside) and image forensics (determining the origin and authenticity of a given image and revealing the processing history the image has gone through) has become crucial to the digital society. In this dissertation, the steganalysis and forensics of digital images are treated as pattern classification problems so as to make advanced machine learning (ML) methods applicable. Three topics are covered: (1) architectural design of convolutional neural networks (CNNs) for steganalysis, (2) statistical feature extraction for camera model classification, and (3) real-world tampering detection and localization. For covert communications, steganography is used to embed secret messages into images by altering pixel values slightly. Since advanced steganography alters the pixel values in the image regions that are hard to be detected, the traditional ML-based steganalytic methods heavily relied on sophisticated manual feature design have been pushed to the limit. To overcome this difficulty, in-depth studies are conducted and reported in this dissertation so as to move the success achieved by the CNNs in computer vision to steganalysis. The outcomes achieved and reported in this dissertation are: (1) a proposed CNN architecture incorporating the domain knowledge of steganography and steganalysis, and (2) ensemble methods of the CNNs for steganalysis. The proposed CNN is currently one of the best classifiers against steganography. Camera model classification from images aims at assigning a given image to its source capturing camera model based on the statistics of image pixel values. For this, two types of statistical features are designed to capture the traces left by in-camera image processing algorithms. The first is Markov transition probabilities modeling block-DCT coefficients for JPEG images; the second is based on histograms of local binary patterns obtained in both the spatial and wavelet domains. The designed features serve as the input to train support vector machines, which have the best classification performance at the time the features are proposed. The last part of this dissertation documents the solutions delivered by the author’s team to The First Image Forensics Challenge organized by the Information Forensics and Security Technical Committee of the IEEE Signal Processing Society. In the competition, all the fake images involved were doctored by popular image-editing software to simulate the real-world scenario of tampering detection (determine if a given image has been tampered or not) and localization (determine which pixels have been tampered). In Phase-1 of the Challenge, advanced steganalysis features were successfully migrated to tampering detection. In Phase-2 of the Challenge, an efficient copy-move detector equipped with PatchMatch as a fast approximate nearest neighbor searching method were developed to identify duplicated regions within images. With these tools, the author’s team won the runner-up prizes in both the two phases of the Challenge
    • …
    corecore