3,288 research outputs found

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    A novel approach for food intake detection using electroglottography

    Get PDF
    Many methods for monitoring diet and food intake rely on subjects self-reporting their daily intake. These methods are subjective, potentially inaccurate and need to be replaced by more accurate and objective methods. This paper presents a novel approach that uses an electroglottograph (EGG) device for an objective and automatic detection of food intake. Thirty subjects participated in a four-visit experiment involving the consumption of meals with self-selected content. Variations in the electrical impedance across the larynx caused by the passage of food during swallowing were captured by the EGG device. To compare performance of the proposed method with a well-established acoustical method, a throat microphone was used for monitoring swallowing sounds. Both signals were segmented into non-overlapping epochs of 30 s and processed to extract wavelet features. Subject-independent classifiers were trained, using artificial neural networks, to identify periods of food intake from the wavelet features. Results from leave-one-out cross validation showed an average per-epoch classification accuracy of 90.1% for the EGG-based method and 83.1% for the acoustic-based method, demonstrating the feasibility of using an EGG for food intake detection.Fil: Farooq, Muhammad. University of Alabama; Estados UnidosFil: Fontana, Juan Manuel. University of Alabama; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Sazonov, Edward. University of Alabama; Estados Unido

    A radial basis classifier for the automatic detection of aspiration in children with dysphagia

    Get PDF
    BACKGROUND: Silent aspiration or the inhalation of foodstuffs without overt physiological signs presents a serious health issue for children with dysphagia. To date, there are no reliable means of detecting aspiration in the home or community. An assistive technology that performs in these environments could inform caregivers of adverse events and potentially reduce the morbidity and anxiety of the feeding experience for the child and caregiver, respectively. This paper proposes a classifier for automatic classification of aspiration and swallow vibration signals non-invasively recorded on the neck of children with dysphagia. METHODS: Vibration signals associated with safe swallows and aspirations, both identified via videofluoroscopy, were collected from over 100 children with neurologically-based dysphagia using a single-axis accelerometer. Five potentially discriminatory mathematical features were extracted from the accelerometry signals. All possible combinations of the five features were investigated in the design of radial basis function classifiers. Performance of different classifiers was compared and the best feature sets were identified. RESULTS: Optimal feature combinations for two, three and four features resulted in statistically comparable adjusted accuracies with a radial basis classifier. In particular, the feature pairing of dispersion ratio and normality achieved an adjusted accuracy of 79.8 ± 7.3%, a sensitivity of 79.4 ± 11.7% and specificity of 80.3 ± 12.8% for aspiration detection. Addition of a third feature, namely energy, increased adjusted accuracy to 81.3 ± 8.5% but the change was not statistically significant. A closer look at normality and dispersion ratio features suggest leptokurticity and the frequency and magnitude of atypical values as distinguishing characteristics between swallows and aspirations. The achieved accuracies are 30% higher than those reported for bedside cervical auscultation. CONCLUSION: The proposed aspiration classification algorithm provides promising accuracy for aspiration detection in children. The classifier is conducive to hardware implementation as a non-invasive, portable "aspirometer". Future research should focus on further enhancement of accuracy rates by considering other signal features, classifier methods, or an augmented variety of training samples. The present study is an important first step towards the eventual development of wearable intelligent intervention systems for the diagnosis and management of aspiration

    On-Body Sensing Solutions for Automatic Dietary Monitoring

    Full text link

    Automatic food intake detection based on swallowing sounds

    Get PDF
    This paper presents a novel fully automatic food intake detection methodology, an important step toward objective monitoring of ingestive behavior. The aim of such monitoring is to improve our understanding of eating behaviors associated with obesity and eating disorders. The proposed methodology consists of two stages. First, acoustic detection of swallowing instances based on mel-scale Fourier spectrum features and classification using support vector machines is performed. Principal component analysis and a smoothing algorithm are used to improve swallowing detection accuracy. Second, the frequency of swallowing is used as a predictor for detection of food intake episodes. The proposed methodology was tested on data collected from 12 subjects with various degrees of adiposity. Average accuracies of \u3e80% and \u3e75% were obtained for intra-subject and inter-subject models correspondingly with a temporal resolution of 30 s. Results obtained on 44.1 h of data with a total of 7305 swallows show that detection accuracies are comparable for obese and lean subjects. They also suggest feasibility of food intake detection based on swallowing sounds and potential of the proposed methodology for automatic monitoring of ingestive behavior. Based on a wearable non-invasive acoustic sensor the proposed methodology may potentially be used in free-living conditions

    Thought on Food: A Systematic Review of Current Approaches and Challenges for Food Intake Detection

    Get PDF
    Nowadays, individuals have very stressful lifestyles, affecting their nutritional habits. In the early stages of life, teenagers begin to exhibit bad habits and inadequate nutrition. Likewise, other people with dementia, Alzheimer’s disease, or other conditions may not take food or medicine regularly. Therefore, the ability to monitor could be beneficial for them and for the doctors that can analyze the patterns of eating habits and their correlation with overall health. Many sensors help accurately detect food intake episodes, including electrogastrography, cameras, microphones, and inertial sensors. Accurate detection may provide better control to enable healthy nutrition habits. This paper presents a systematic review of the use of technology for food intake detection, focusing on the different sensors and methodologies used. The search was performed with a Natural Language Processing (NLP) framework that helps screen irrelevant studies while following the PRISMA methodology. It automatically searched and filtered the research studies in different databases, including PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Then, the manual analysis selected 30 papers based on the results of the framework for further analysis, which support the interest in using sensors for food intake detection and nutrition assessment. The mainly used sensors are cameras, inertial, and acoustic sensors that handle the recognition of food intake episodes with artificial intelligence techniques. This research identifies the most used sensors and data processing methodologies to detect food intake.info:eu-repo/semantics/publishedVersio
    • …
    corecore