6,811 research outputs found

    Aircraft Landing Control Using the H-inf Control and the Dynamic Inversion Technique

    Get PDF
    The chapter presents the automatic control of aircraft during landing, taking into account the sensor errors and the wind shears. Both planes—longitudinal and lateral-directional—are treated; the new obtained automatic landing system (ALS) will consists of two subsystems—the first one controls aircraft motion in longitudinal plane, while the second one is for the control of aircraft motion in lateral-directional plane. These two systems can be treated separately, but in the same time, these can be put together to control all the parameters which interfere in the dynamics of aircraft landing. The two new ALSs are designed by using the H-inf control, the dynamic inversion, optimal observers, and reference models. To validate the new obtained ALS, one uses the dynamics associated to the landing of a Boeing 747, software implements the theoretical results and analyzes the accuracy of the results and the precision standards\u27 achievement with respect to the requirements of the Federal Aviation Administration (FAA)

    Investigations of simulated aircraft flight through thunderstorm outflows

    Get PDF
    The effects of wind shear on aircraft flying through thunderstorm gust fronts were investigated. A computer program was developed to solve the two dimensional, nonlinear equations of aircraft motion, including wind shear. The procedure described and documented accounts for spatial and temporal variations of the aircraft within the flow regime. Analysis of flight paths and control inputs necessary to maintain specified trajectories for aircraft having characteristics of DC-8, B-747, augmentor wing STOL, and DHC-6 aircraft was recorded. From the analysis an attempt was made to find criteria for reduction of the hazards associated with landing through thunderstorm gust fronts

    Development and evaluation of a Kalman-filter algorithm for terminal area navigation using sensors of moderate accuracy

    Get PDF
    Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system

    Analysis of pilot control strategy

    Get PDF
    Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics

    Applications of inertial navigation and modern control theory to the all weather landing problem

    Get PDF
    Inertial navigation and automatic landing control theory applied to instrument landing proble

    Aeronautical Engineering: A special bibliography with indexes, supplement 64, December 1975

    Get PDF
    This bibliography lists 288 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1975

    Investigation of aircraft landing in variable wind fields

    Get PDF
    A digital simulation study is reported of the effects of gusts and wind shear on the approach and landing of aircraft. The gusts and wind shear are primarily those associated with wind fields created by surface wind passing around bluff geometries characteristic of buildings. Also, flight through a simple model of a thunderstorm is investigated. A two-dimensional model of aircraft motion was represented by a set of nonlinear equations which accounted for both spatial and temporal variations of winds. The landings of aircraft with the characteristics of a DC-8 and a DHC-6 were digitally simulated under different wind conditions with fixed and automatic controls. The resulting deviations in touchdown points and the controls that are required to maintain the desired flight path are presented. The presence of large bluff objects, such as buildings in the flight path is shown to have considerable effect on aircraft landings

    Flight performance of a navigation, guidance, and control system concept for automatic approach and landing of space shuttle orbiter

    Get PDF
    Unpowered automatic approaches and landings were conducted to study navigation, guidance, and control problems associated with terminal area approach and landing for the space shuttle vehicle. The flight tests were performed in a Convair 990 aircraft equipped with a digital flight control computer connected to the aircraft control system and displays. The tests were designed to evaluate the performance of a navigation and guidance concept that utilized blended radio/inertial navigation with VOR, DME, and ILS as the ground navigation aids. Results from 36 automatic approaches and landings from 11,300 m (37,000 ft) to touchdown are presented. Preliminary results indicate that this concept may provide sufficient accuracy to accomplish automatic landing of the shuttle orbiter without air-breathing engines

    An algorithm for terminal air traffic control

    Get PDF
    An area-navigation method for automatic control of aircraft arriving in a random fashion from the en-route centers to the near terminal area is proposed. Control is exercised by a ground computer that sequences and schedules the aircraft. Altitude segregation is used to separate aircraft in velocity classes. Merging of all aircraft occurs near the outer marker. The merging region is designed so that no near misses will occur if the aircraft follow the assigned trajectories

    Helical automatic approaches of helicopters with microwave landing systems

    Get PDF
    A program is under way to develop a data base for establishing navigation and guidance concepts for all-weather operation of rotorcraft. One of the objectives is to examine the feasibility of conducting simultaneous rotorcraft and conventional fixed-wing, noninterfering, landing operations in instrument meteorological conditions at airports equipped with microwave landing systems (MLSs) for fixed-wing traffic. An initial test program to investigate the feasibility of conducting automatic helical approaches was completed, using the MLS at Crows Landing near Ames. These tests were flown on board a UH-1H helicopter equipped with a digital automatic landing system. A total of 48 automatic approaches and landings were flown along a two-turn helical descent, tangent to the centerline of the MLS-equipped runway to determine helical light performance and to provide a data base for comparison with future flights for which the helical approach path will be located near the edge of the MLS coverage. In addition, 13 straight-in approaches were conducted. The performance with varying levels of state-estimation system sophistication was evaluated as part of the flight tests. The results indicate that helical approaches to MLS-equipped runways are feasible for rotorcraft and that the best position accuracy was obtained using the Kalman-filter state-estimation with inertial navigation systems sensors
    • …
    corecore