5,678 research outputs found

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    Verification of timed circuits with failure-directed abstractions

    Get PDF
    Journal ArticleAbstract-This paper presents a method to address state explosion in timed-circuit verification by using abstraction directed by the failure model. This method allows us to decompose the verification problem into a set of subproblems, each of which proves that a specific failure condition does not occur. To each subproblem, abstraction is applied using safe transformations to reduce the complexity of verification. The abstraction preserves all essential behaviors conservatively for the specific failure model in the concrete description. Therefore, no violations of the given failure model are missed when only the abstract description is analyzed. An algorithm is also shown to examine the abstract error trace to either find a concrete error trace or report that it is a false negative. This paper presents results using the proposed failure-directed abstractions as applied to several large timed circuit designs

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    Technology Independent Synthesis of CMOS Operational Amplifiers

    Get PDF
    Analog circuit design does not enjoy as much automation as its digital counterpart. Analog sizing is inherently knowledge intensive and requires accurate modeling of the different parametric effects of the devices. Besides, the set of constraints in a typical analog design problem is large, involving complex tradeoffs. For these reasons, the task of modeling an analog design problem in a form viable for automation is much more tedious than the digital design. Consequently, analog blocks are still handcrafted intuitively and often become a bottleneck in the integrated circuit design, thereby increasing the time to market. In this work, we address the problem of automatically solving an analog circuit design problem. Specifically, we propose methods to automate the transistor-level sizing of OpAmps. Given the specifications and the netlist of the OpAmp, our methodology produces a design that has the accuracy of the BSIM models used for simulation and the advantage of a quick design time. The approach is based on generating an initial first-order design and then refining it. In principle, the refining approach is a simulated-annealing scheme that uses (i) localized simulations and (ii) convex optimization scheme (COS). The optimal set of input variables for localized simulations has been selected by using techniques from Design of Experiments (DOE). To formulate the design problem as a COS problem, we have used monomial circuit models that are fitted from simulation data. These models accurately predict the performance of the circuit in the proximity of the initial guess. The models can also be used to gain valuable insight into the behavior of the circuit and understand the interrelations between the different performance constraints. A software framework that implements this methodology has been coded in SKILL language of Cadence. The methodology can be applied to design different OpAmp topologies across different technologies. In other words, the framework is both technology independent and topology independent. In addition, we develop a scheme to empirically model the small signal parameters like \u27gm\u27 and \u27gds\u27 of CMOS transistors. The monomial device models are reusable for a given technology and can be used to formulate the OpAmp design problem as a COS problem. The efficacy of the framework has been demonstrated by automatically designing different OpAmp topologies across different technologies. We designed a two-stage OpAmp and a telescopic OpAmp in TSMC025 and AMI016 technologies. Our results show significant (10–15%) improvement in the performance of both the OpAmps in both the technologies. While the methodology has shown encouraging results in the sub-micrometer regime, the effectiveness of the tool has to be investigated in the deep-sub-micron technologies

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    System level performance and yield optimisation for analogue integrated circuits

    No full text
    Advances in silicon technology over the last decade have led to increased integration of analogue and digital functional blocks onto the same single chip. In such a mixed signal environment, the analogue circuits must use the same process technology as their digital neighbours. With reducing transistor sizes, the impact of process variations on analogue design has become prominent and can lead to circuit performance falling below specification and hence reducing the yield.This thesis explores the methodology and algorithms for an analogue integrated circuit automation tool that optimizes performance and yield. The trade-offs between performance and yield are analysed using a combination of an evolutionary algorithm and Monte Carlo simulation. Through the integration of yield parameter into the optimisation process, the trade off between the performance functions can be better treated that able to produce a higher yield. The results obtained from the performance and variation exploration are modelled behaviourally using a Verilog-A language. The model has been verified with transistor level simulation and a silicon prototype.For a large analogue system, the circuit is commonly broken down into its constituent sub-blocks, a process known as hierarchical design. The use of hierarchical-based design and optimisation simplifies the design task and accelerates the design flow by encouraging design reuse.A new approach for system level yield optimisation using a hierarchical-based design is proposed and developed. The approach combines Multi-Objective Bottom Up (MUBU) modelling technique to model the circuit performance and variation and Top Down Constraint Design (TDCD) technique for the complete system level design. The proposed method has been used to design a 7th order low pass filter and a charge pump phase locked loop system. The results have been verified with transistor level simulations and suggest that an accurate system level performance and yield prediction can be achieved with the proposed methodology
    corecore