16,257 research outputs found

    Mediation of semantic web services in IRS-III

    Get PDF
    Business applications composed of heterogeneous distributed components or Web services need mediation to resolve data and process mismatches at runtime. This paper describes mediation in IRS-III, a framework and platform for developing WSMO-based Semantic Web Services. We present our approach to mediation within Semantic Web Services and highlight the role of WSMO mediator types when solving mismatches at the semantic level between a service requester and a service provider. We describe the components of our mediation framework and how it can handle data, goal and process mediation during the activities of selection, composition and invocation of Semantic Web Services

    IRS II: a framework and infrastructure for semantic web services

    Get PDF
    In this paper we describe IRS–II (Internet Reasoning Service) a framework and implemented infrastructure, whose main goal is to support the publication, location, composition and execution of heterogeneous web services, augmented with semantic descriptions of their functionalities. IRS–II has three main classes of features which distinguish it from other work on semantic web services. Firstly, it supports one-click publishing of standalone software: IRS–II automatically creates the appropriate wrappers, given pointers to the standalone code. Secondly, it explicitly distinguishes between tasks (what to do) and methods (how to achieve tasks) and as a result supports capability-driven service invocation; flexible mappings between services and problem specifications; and dynamic, knowledge-based service selection. Finally, IRS–II services are web service compatible – standard web services can be trivially published through the IRS–II and any IRS–II service automatically appears as a standard web service to other web service infrastructures. In the paper we illustrate the main functionalities of IRS–II through a scenario involving a distributed application in the healthcare domain

    Components Interoperability through Mediating Connector Patterns

    Full text link
    A key objective for ubiquitous environments is to enable system interoperability between system's components that are highly heterogeneous. In particular, the challenge is to embed in the system architecture the necessary support to cope with behavioral diversity in order to allow components to coordinate and communicate. The continuously evolving environment further asks for an automated and on-the-fly approach. In this paper we present the design building blocks for the dynamic and on-the-fly interoperability between heterogeneous components. Specifically, we describe an Architectural Pattern called Mediating Connector, that is the key enabler for communication. In addition, we present a set of Basic Mediator Patterns, that describe the basic mismatches which can occur when components try to interact, and their corresponding solutions.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    A Survey on Service Composition Middleware in Pervasive Environments

    Get PDF
    The development of pervasive computing has put the light on a challenging problem: how to dynamically compose services in heterogeneous and highly changing environments? We propose a survey that defines the service composition as a sequence of four steps: the translation, the generation, the evaluation, and finally the execution. With this powerful and simple model we describe the major service composition middleware. Then, a classification of these service composition middleware according to pervasive requirements - interoperability, discoverability, adaptability, context awareness, QoS management, security, spontaneous management, and autonomous management - is given. The classification highlights what has been done and what remains to do to develop the service composition in pervasive environments

    Bioinformatics service reconciliation by heterogeneous schema transformation

    Get PDF
    This paper focuses on the problem of bioinformatics service reconciliation in a generic and scalable manner so as to enhance interoperability in a highly evolving field. Using XML as a common representation format, but also supporting existing flat-file representation formats, we propose an approach for the scalable semi-automatic reconciliation of services, possibly invoked from within a scientific workflows tool. Service reconciliation may use the AutoMed heterogeneous data integration system as an intermediary service, or may use AutoMed to produce services that mediate between services. We discuss the application of our approach for the reconciliation of services in an example bioinformatics workflow. The main contribution of this research is an architecture for the scalable reconciliation of bioinformatics services

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web
    • …
    corecore