43,402 research outputs found

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    ART Neural Networks for Remote Sensing Image Analysis

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems, including automatic mapping from remote sensing satellite measurements, parts design retrieval at the Boeing Company, medical database prediction, and robot vision. This paper features a self-contained introduction to ART and ARTMAP dynamics. An application of these networks to image processing is illustrated by means of a remote sensing example. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, which allows the network to encode important rare cases but which may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. Recently developed ART models (dART and dARTMAP) retain stable coding, recognition, and prediction, but allow arbitrarily distributed category representation during learning as well as performance

    PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications

    Get PDF
    Energy efficiency is a major concern in modern high-performance computing system design. In the past few years, there has been mounting evidence that power usage limits system scale and computing density, and thus, ultimately system performance. However, despite the impact of power and energy on the computer systems community, few studies provide insight to where and how power is consumed on high-performance systems and applications. In previous work, we designed a framework called PowerPack that was the first tool to isolate the power consumption of devices including disks, memory, NICs, and processors in a high-performance cluster and correlate these measurements to application functions. In this work, we extend our framework to support systems with multicore, multiprocessor-based nodes, and then provide in-depth analyses of the energy consumption of parallel applications on clusters of these systems. These analyses include the impacts of chip multiprocessing on power and energy efficiency, and its interaction with application executions. In addition, we use PowerPack to study the power dynamics and energy efficiencies of dynamic voltage and frequency scaling (DVFS) techniques on clusters. Our experiments reveal conclusively how intelligent DVFS scheduling can enhance system energy efficiency while maintaining performance
    • …
    corecore