3,485 research outputs found

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Zero Shot Learning for Code Education: Rubric Sampling with Deep Learning Inference

    Full text link
    In modern computer science education, massive open online courses (MOOCs) log thousands of hours of data about how students solve coding challenges. Being so rich in data, these platforms have garnered the interest of the machine learning community, with many new algorithms attempting to autonomously provide feedback to help future students learn. But what about those first hundred thousand students? In most educational contexts (i.e. classrooms), assignments do not have enough historical data for supervised learning. In this paper, we introduce a human-in-the-loop "rubric sampling" approach to tackle the "zero shot" feedback challenge. We are able to provide autonomous feedback for the first students working on an introductory programming assignment with accuracy that substantially outperforms data-hungry algorithms and approaches human level fidelity. Rubric sampling requires minimal teacher effort, can associate feedback with specific parts of a student's solution and can articulate a student's misconceptions in the language of the instructor. Deep learning inference enables rubric sampling to further improve as more assignment specific student data is acquired. We demonstrate our results on a novel dataset from Code.org, the world's largest programming education platform.Comment: To appear at AAAI 2019; 9 page

    Performance and Consistency in Learning to Program

    Get PDF
    Performance and consistency play a large role in learning. Decreasing the effort that one invests into course work may have short-term benefits such as reduced stress. However, as courses progress, neglected work accumulates and may cause challenges with learning the course content at hand. In this work, we analyze students' performance and consistency with programming assignments in an introductory programming course. We study how performance, when measured through progress in course assignments, evolves throughout the course, study weekly fluctuations in students' work consistency, and contrast this with students' performance in the course final exam. Our results indicate that whilst fluctuations in students' weekly performance do not distinguish poor performing students from well performing students with a high accuracy, more accurate results can be achieved when focusing on the performance of students on individual assignments which could be used for identifying struggling students who are at risk of dropping out of their studies.Peer reviewe
    corecore