32 research outputs found

    Further advances on Bayesian Ying-Yang harmony learning

    Get PDF

    A Study on the Recognition of Seabed Environments Employing Sonar Images

    Get PDF
    The ocean accounts for approximately 70% of the area on the earth, and the water as well as coastal areas sustain many species including humans. Ocean resources are used for fish farming, land reclamation, and a variety of other purposes. Seabed resources such as oil, natural gas methane hydrates, and manganese nodules are still largely unexploited on the bottom of the sea. Maps are critical to development activities such as construction, mining, offshore drilling, marine traffic control, security, environmental protection, and tourism. Accordingly, more topographic and others types of mapping information are needed for marine and submarine investigations. Both waterborne and airborne survey techniques show promise for collecting data on marine and submarine environments, and these techniques can be classified into four main categories. First, remote sensing by satellites or aircraft is a widely used technique that can yield important data such as information on sea levels and coastal sediment transport. Second, investigations may collect direct information by remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), and divers. While the quality of data obtained from these techniques is high, the data obtained are often limited to relatively shallow and small geographic areas. Third, sediment profile imagery can be used to collect photographs that contain detailed information about the seabed. Lastly, acoustic investigations that use sonar are popular in marine mapping studies, especially in coastal areas. In particular, acoustic investigations that employ ultrasound technology can yield rich information about variations in bathymetry. Unlike air, water has physical properties that make it difficult for light or electromagnetic waves to pass through. However, sound waves propagate readily in water. Therefore, sound waves are used in a wide range of technical applications to detect underwater structures that are difficult to observe with light-based techniques. In the dark depths of the ocean, the use of acoustic technology is essential. The development of marine acoustic technology is expanding in modern times. In addition to the basic physics related to acoustic waves, much research has been dedicated to other basic and applied fields such as electronics, physical oceanography, signal processing, and biology. The realization of new sonar systems that utilize advanced detection algorithms can be expected to contribute to major breakthroughs in oceanographic research that require deployment to novel marine environments and other areas of natural resource interest. In this study, the author focuses on side-scan sonar, which is one of the imaging technologies that employs sound to determine the seabed state, to conduct research on imaging algorithms for discrimination. The proposed method for discrimination was coupled to a high-speed detection method for installed reefs on the seabed. This method is also capable of detecting unknown objects with Haar-like features during object recognition of rectangular regions of a certain size via machine learning by AdaBoost and fast elimination of non-object regions on the cascade structure. Side-scan and forward looking sonars are some of the most widely used imaging systems for obtaining large-scale images of the seafloor, and their application continues to expand rapidly with their increasing deployment on AUVs. However, it can be difficult to extract quantitative information from the images generated from these processes, in particular, for the detection and extraction of information on the objects within these images. Hence, this study analyzes features that are common to most undersea objects projected in side-scan sonar images to improve information processing. By using a technique based on the k-means method to determine the Haar-like features, the number of patterns of Haar-like features was minimized and the proposed method was capable of detecting undersea objects faster than current methodology. This study demonstrates the effectiveness of this method by applying it to the detection of real objects imaged on the seabed (i.e., sandy ground and muddy ground). Attempts are made as well to automate the proposed method for discriminating objects lying on the seafloor from surficial sediments. During undersea exploration, a thorough understanding of the state of the seafloor surrounding objects of interest is important. Therefore, a method is proposed in this study to automatically determine seabed sediment characteristics. In traditional methods, a variety of techniques have been used to collect information about seabed sediments including depth measurements, bathymetry evaluations, and seabed image analyses using the co-occurrence direction of the gray values of the image. Unfortunately, such data cannot be estimated from the object image itself and it can take a long time to obtain the required information. Therefore, these techniques are not currently suitable for real-time identification of objects on the seafloor. For practical purposes, automatic techniques that are developed should follow a simple procedure that results in highly precise and accurate classifications. The technique proposed here uses the subspace method, which is a method that has been used for supervised pattern recognition and analyses of higher-order local autocorrelation features. The most important feature of this method is that it uses only acoustic images obtained from the side-scan sonar. This feature opens up the possibility of installing this technology in unmanned small digital devices. In this study, the classification accuracy of the proposed automation method is compared to the accuracy of traditional methods in order to show the usefulness of the technology. In addition, the proposed method is applied to real-world images of the seabed to evaluate its effectiveness in marine surveys. The thesis is organized as follows. In Chapter 1, the purpose of this study is presented and previous studies relevant to this research are reviewed. In Chapter 2, an overview of underwater sound is given and key principles of sound wave technology are explained. In Chapter 3, a new method for detecting and discriminating objects on the seafloor is proposed. In Chapter 4, the possibility of automating the discrimination method is explored. Finally, Chapter 5 summarizes the findings of this study and proposes new avenues for future research.九州工業大学博士学位論文 学位記番号:工博甲第364号 学位授与年月日:平成26年3月25日Chapter 1 Introduction|Chapter 2 Underwater acoustics|Chapter 3 Detection of underwater objects based on machine learning|Chapter 4 Automatic classification of seabed sediments using HLAC|Chapter 5 Conclusion九州工業大学平成25年

    A Study on the Recognition of Seabed Environments Employing Sonar Images

    Get PDF
    The ocean accounts for approximately 70% of the area on the earth, and the water as well as coastal areas sustain many species including humans. Ocean resources are used for fish farming, land reclamation, and a variety of other purposes. Seabed resources such as oil, natural gas methane hydrates, and manganese nodules are still largely unexploited on the bottom of the sea. Maps are critical to development activities such as construction, mining, offshore drilling, marine traffic control, security, environmental protection, and tourism. Accordingly, more topographic and others types of mapping information are needed for marine and submarine investigations. Both waterborne and airborne survey techniques show promise for collecting data on marine and submarine environments, and these techniques can be classified into four main categories. First, remote sensing by satellites or aircraft is a widely used technique that can yield important data such as information on sea levels and coastal sediment transport. Second, investigations may collect direct information by remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), and divers. While the quality of data obtained from these techniques is high, the data obtained are often limited to relatively shallow and small geographic areas. Third, sediment profile imagery can be used to collect photographs that contain detailed information about the seabed. Lastly, acoustic investigations that use sonar are popular in marine mapping studies, especially in coastal areas. In particular, acoustic investigations that employ ultrasound technology can yield rich information about variations in bathymetry. Unlike air, water has physical properties that make it difficult for light or electromagnetic waves to pass through. However, sound waves propagate readily in water. Therefore, sound waves are used in a wide range of technical applications to detect underwater structures that are difficult to observe with light-based techniques. In the dark depths of the ocean, the use of acoustic technology is essential. The development of marine acoustic technology is expanding in modern times. In addition to the basic physics related to acoustic waves, much research has been dedicated to other basic and applied fields such as electronics, physical oceanography, signal processing, and biology. The realization of new sonar systems that utilize advanced detection algorithms can be expected to contribute to major breakthroughs in oceanographic research that require deployment to novel marine environments and other areas of natural resource interest. In this study, the author focuses on side-scan sonar, which is one of the imaging technologies that employs sound to determine the seabed state, to conduct research on imaging algorithms for discrimination. The proposed method for discrimination was coupled to a high-speed detection method for installed reefs on the seabed. This method is also capable of detecting unknown objects with Haar-like features during object recognition of rectangular regions of a certain size via machine learning by AdaBoost and fast elimination of non-object regions on the cascade structure. Side-scan and forward looking sonars are some of the most widely used imaging systems for obtaining large-scale images of the seafloor, and their application continues to expand rapidly with their increasing deployment on AUVs. However, it can be difficult to extract quantitative information from the images generated from these processes, in particular, for the detection and extraction of information on the objects within these images. Hence, this study analyzes features that are common to most undersea objects projected in side-scan sonar images to improve information processing. By using a technique based on the k-means method to determine the Haar-like features, the number of patterns of Haar-like features was minimized and the proposed method was capable of detecting undersea objects faster than current methodology. This study demonstrates the effectiveness of this method by applying it to the detection of real objects imaged on the seabed (i.e., sandy ground and muddy ground). Attempts are made as well to automate the proposed method for discriminating objects lying on the seafloor from surficial sediments. During undersea exploration, a thorough understanding of the state of the seafloor surrounding objects of interest is important. Therefore, a method is proposed in this study to automatically determine seabed sediment characteristics. In traditional methods, a variety of techniques have been used to collect information about seabed sediments including depth measurements, bathymetry evaluations, and seabed image analyses using the co-occurrence direction of the gray values of the image. Unfortunately, such data cannot be estimated from the object image itself and it can take a long time to obtain the required information. Therefore, these techniques are not currently suitable for real-time identification of objects on the seafloor. For practical purposes, automatic techniques that are developed should follow a simple procedure that results in highly precise and accurate classifications. The technique proposed here uses the subspace method, which is a method that has been used for supervised pattern recognition and analyses of higher-order local autocorrelation features. The most important feature of this method is that it uses only acoustic images obtained from the side-scan sonar. This feature opens up the possibility of installing this technology in unmanned small digital devices. In this study, the classification accuracy of the proposed automation method is compared to the accuracy of traditional methods in order to show the usefulness of the technology. In addition, the proposed method is applied to real-world images of the seabed to evaluate its effectiveness in marine surveys. The thesis is organized as follows. In Chapter 1, the purpose of this study is presented and previous studies relevant to this research are reviewed. In Chapter 2, an overview of underwater sound is given and key principles of sound wave technology are explained. In Chapter 3, a new method for detecting and discriminating objects on the seafloor is proposed. In Chapter 4, the possibility of automating the discrimination method is explored. Finally, Chapter 5 summarizes the findings of this study and proposes new avenues for future research.九州工業大学博士学位論文 学位記番号:工博甲第364号 学位授与年月日:平成26年3月25日Chapter 1 Introduction|Chapter 2 Underwater acoustics|Chapter 3 Detection of underwater objects based on machine learning|Chapter 4 Automatic classification of seabed sediments using HLAC|Chapter 5 Conclusion九州工業大学平成25年

    노래 신호의 자동 전사

    Get PDF
    학위논문 (박사)-- 서울대학교 융합과학기술대학원 융합과학부, 2017. 8. 이교구.Automatic music transcription refers to an automatic extraction of musical attributes such as notes from an audio signal to a symbolic level. The symbolized music data are applicable for various purposes such as music education and production by providing higher-level information to both consumers and creators. Although the singing voice is the easiest one to listen and play among various music signals, traditional transcription methods for musical instruments are not suitable due to the acoustic complexity in the human voice. The main goal of this thesis is to develop a fully-automatic singing transcription system that exceeds existing methods. We first take a look at some typical approaches for pitch tracking and onset detection, which are two fundamental tasks of music transcription, and then propose several methods for each task. In terms of pitch tracking, we examine the effect of data sampling on the performance of periodicity analysis of music signals. For onset detection, the local homogeneity in the harmonic structure is exploited through the cepstral analysis and unsupervised classification. The final transcription system includes feature extraction and probabilistic model of the harmonic structure, and note transition based on the hidden Markov model. It achieved the best performance (an F-measure of 82%) in the note-level evaluation including the state-of-the-art systems.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Definitions 5 1.2.1 Musical keywords 5 1.2.2 Scientific keywords 7 1.2.3 Representations 7 1.3 Problems in singing transcription 9 1.4 Topics of interest 10 1.5 Outline of the thesis 13 Chapter 2 Background 16 2.1 Pitch estimation 17 2.1.1 Time-domain methods 17 2.1.2 Frequency-domain methods 18 2.2 Note segmentation 20 2.2.1 Onset detection 20 2.2.2 Offset detection 23 2.3 Singing transcription 24 2.4 Evaluation methodology 26 2.4.1 Pitch estimation 26 2.4.2 Note segmentation 27 2.4.3 Dataset 28 2.5 Summary 31 Chapter 3 Periodicity Analysis by Sampling in the Time/Frequency Domain for Pitch Tracking 32 3.1 Introduction 32 3.2 Data sampling 34 3.3 Sampled ACF/DF in the time domain 37 3.4 Sampled ACF/DF in the frequency domain 38 3.5 Iterative F0 estimation 40 3.6 Experimental setup 42 3.7 Result 46 3.8 Summary 49 Chapter 4 Note Onset Detection based on Harmonic Cepstrum regularity 50 4.1 Introduction 50 4.2 Cepstral analysis 52 4.3 Harmonic cepstrum regularity 56 4.3.1 Harmonic quefrency selection 57 4.3.2 Sub-harmonic regularity function 58 4.3.3 Adaptive thresholding 59 4.3.4 Picking onsets 59 4.4 Experiments 61 4.4.1 Dataset description 61 4.4.2 Evaluation results 62 4.5 Summary 64 Chapter 5 Robust Singing Transcription System using Local Homogeneity in the Harmonic Structure 66 5.1 Introduction 66 5.2 F0 tracking 71 5.3 Feature extraction 72 5.4 Mixture model 76 5.5 Note detection 80 5.5.1 Transition boundary detection 81 5.5.2 Note boundary selection 83 5.5.3 Note pitch decision 84 5.6 Evaluation 86 5.6.1 Dataset 86 5.6.2 Criteria and measures 87 5.6.3 Experimental setup 89 5.7 Results and discussions 90 5.7.1 Failure analysis 95 5.8 Summary 97 Chapter 6 Conclusion and Future Work 99 6.1 Contributions 99 6.2 Future work 103 6.2.1 Precise partial tracking using instantaneous frequency 103 6.2.2 Linguistic model for note segmentation 105 Appendix 108 Derivation of the instantaneous frequency 108 Bibliography 110 초 록 124Docto

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Systems of difference equations as a model for the Lorenz system

    Get PDF
    We consider systems of difference equations as a model for the Lorenz system of differential equations. Using the power series whose coefficients are the solutions of these systems, we define three real functions, that are approximation for the solutions of the Lorenz system

    A new methodology for modelling urban soundscapes: a psychometric revisitation of the current standard and a Bayesian approach for individual response prediction

    Get PDF
    Measuring how the urban sound environment is perceived by public space users, which is usually referred as urban soundscape, is a research field of particular in terest for a broad and multidisciplinary scientific community besides private and public agencies. The need for a tool to quantify soundscapes would provide much support to urban planning and design, so to public healthcare. Soundscape liter ature still does not show a unique strategy for addressing this topic. Soundscape definition, data collection, and analysis tools have been recently standardised and published in three respective ISO (International Organisation for Standardization) items. In particular, the third item of the ISO series defines the calculation of the soundscape experience of public space users by means of multiple Likert scales. In this thesis, with regards to the third item of the soundscape ISO series, the soundscape data analysis standard method is questioned and a correction paradigm is proposed. This thesis questiones the assumption of a point-wise superimposition match across the Likert scales used during the soundscape assessment task. In order to do that, the thesis presents a new method which introduces correction values, or metric, for adjusting the scales in accordance to the results of common scaling behaviours found across the investigated locations. In order to validate the results, the outcome of the new metric is used as tar get to predict the individual experience of soundscapes from the participants. In comparison to the current ISO output, the new correction values reveal to achievea better predictability in both linear and non-linear modelling by increasing the ac-curacy of prediction of individual responses up to 52.6% (8.3% higher than theaccuracy obtained with the standard method).Finally, the new metric is used to validate the collection of data samples acrossseveral locations on individual questionnaires responses. Models are trained, in aiterative way, on all the locations except the one used during the validation. Thisprocedure provides a strong validating framework for predicting individual subjectassessments belonging to locations totally unseen during the model training. The results show that the combination of the new metrics with the proposed modelling structure achieves good performance on individual responses across the dataset withan average accuracy above 54%. A new index for measuring the soundscape is fi-nally introduced based on the percentage of people agreeing on soundscape pleas-antness calculated from the new proposed metric and performing a r-squared valueequals to 0.87.The framework introduced is limited by cultural and linguistic factors. Indeed,different corrected metric space are expected to be found when data is collected from different countries or urban context. The current values found in this thesis areso expected to be valid in large British cities and eventually in international hub andcapital cities. In these scenarios the corrected metric would provide a more realisticand direction-invariant representation of how the urban soundscape is perceived compared to the current ISO tool, showing that some components in the circumplex model are perceived softer or stronger according to the dimension. Future research will need to understand better the limitations of this new ramework and to extendand compare it towards different urban, cultural, and linguistic contexts

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes
    corecore