131 research outputs found

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Regional High-Resolution Benthic Habitat Data From Planet Dove Imagery For Conservation Decision-Making and Marine Planning

    Get PDF
    High-resolution benthic habitat data fill an important knowledge gap for many areas of the world and are essential for strategic marine conservation planning and implementing effective resource management. Many countries lack the resources and capacity to create these products, which has hindered the development of accurate ecological baselines for assessing protection needs for coastal and marine habitats and monitoring change to guide adaptive management actions. The PlanetScope (PS) Dove Classic SmallSat constellation delivers high-resolution imagery (4 m) and near-daily global coverage that facilitates the compilation of a cloud-free and optimal water column image composite of the Caribbean’s nearshore environment. These data were used to develop a first-of-its-kind regional thirteen-class benthic habitat map to 30 m water depth using an object-based image analysis (OBIA) approach. A total of 203,676 km2 of shallow benthic habitat across the Insular Caribbean was mapped, representing 5% coral reef, 43% seagrass, 15% hardbottom, and 37% other habitats. Results from a combined major class accuracy assessment yielded an overall accuracy of 80% with a standard error of less than 1% yielding a confidence interval of 78–82%. Of the total area mapped, 15% of these habitats (31,311.7 km2) are within a marine protected or managed area. This information provides a baseline of ecological data for developing and executing more strategic conservation actions, including implementing more effective marine spatial plans, prioritizing and improving marine protected area design, monitoring condition and change for post-storm damage assessments, and providing more accurate habitat data for ecosystem service models

    Modeling Urban Areas Epidemiological Risk Exposure Using Multispectral Spaceborne Data

    Get PDF
    In recent decades, the world has been fast urbanizing. More than half of the world’s human population now live in urban areas. Such high density of urban population is resulting in air and water pollution, land degradation, and infectious diseases spread risks prominence. However, the increasing quality (in terms of finer spatial and temporal resolution)and quantity of Earth Observation (EO) satellite data provide new perspectives for analysing these phenomena. Within the specific domain of epidemiological risks dynamics in urban areas which is the focus of this work, the use of multispectral optical EO sensor data has created new opportunities. These data through their visible, near, mid, far and thermal infrared bands provide planetary-­‐scale access to environmental variables such as temperature, humidity, and vegetation types, location and conditions. Since these environmental variables affect the development of vectors causing infectious disease (e.g., mosquitoes), there is the possibility to use EO data to estimate them, and obtain disease risk models. The Ae. aegypti mosquito species transmits Zika, Dengue, and Chikungunya, diseases widespread in more than 100 world countries, and is concentrated in urban areas. The development of this vector depends significantly on local environmental temperature, humidity, precipitation and vegetation. In this regard, multispectral EO data can provide globally consistent and scalable sources to obtain the required environmental variable inputs, and extract significant and consistent monitoring and forecasting models for vector population. The work reported in this thesis about this topic has led to the following results: 1) A method to map vegetation types in urban areas at high spatial resolution using Sentinel2 multispectral EO data. The results show an improvement in the quality of the resulting vegetation maps with respect to what is available by means of state-­of-­the-­art techniques. 2) A method that combines EO-­based spectral indices, temperature layers, and precipitation measurement to model the temporal evolution of the local mean Ae. aegypti population. The approach leverages the random forest (RF) machine learning (ML) technique and its embedded nonlinear features importance ranking (mean decrease impurity, MDI) to rank the effects of environmental variables and explain the resulting model. 3) A weighted generalized linear modeling (GLM) technique to predict Ae. aegypti population using multispectral EO data covariate inputs. GLMs are generally simple to implement and explain, but do not provide the same level of prediction quality as ML methods. The proposed weighted GLM compares well with ML techniques in quality, and provides capability for more explicitly interpretation of the results. 4) A recurrent neural network (RNN) technique for spatio­‐temporal modeling of Ae. Aegypti population at the urban block level using multispectral EO data as inputs. This study is needed because spatial models obscure seasonality effects while temporal model are blind to spatial changes in micro-­climates. The proposed technique shows great promise with respect to the use of free multispectral EO data for spatio-­temporal epidemiological modeling. All the proposed techniques have been applied in the Latin American region where the risk of Ae. aegypti vector transmitted diseases are the highest in the world. They were validated thanks to the long term partnership with the University of Alagoas in Maceio (Brazil) and the Brazilian company: ECOVEC

    Improving Detection of Dim Targets: Optimization of a Moment-based Detection Algorithm

    Get PDF
    Wide area motion imagery (WAMI) sensor technology is advancing rapidly. Increases in frame rates and detector array sizes have led to a dramatic increase in the volume of data that can be acquired. Without a corresponding increase in analytical manpower, much of these data remain underutilized. This creates a need for fast, automated, and robust methods for detecting dim, moving signals of interest. Current approaches fall into two categories: detect-before-track (DBT) and track-before-detect (TBD) methods. The DBT methods use thresholding to reduce the quantity of data to be processed, making real time implementation practical but at the cost of the ability to detect low signal to noise ratio (SNR) targets without acceptance of a high false alarm rate. TBD methods exploit both the temporal and spatial information simultaneously to make detection of low SNR targets possible, but at the cost of computation time. This research seeks to contribute to the near real time detection of low SNR, unresolved moving targets through an extension of earlier work on higher order moments anomaly detection, a method that exploits both spatial and temporal information but is still computationally efficient and massively parallellizable. The MBD algorithm was found to detect targets comparably with leading TBD methods in 1000th the time

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed

    Image Simulation in Remote Sensing

    Get PDF
    Remote sensing is being actively researched in the fields of environment, military and urban planning through technologies such as monitoring of natural climate phenomena on the earth, land cover classification, and object detection. Recently, satellites equipped with observation cameras of various resolutions were launched, and remote sensing images are acquired by various observation methods including cluster satellites. However, the atmospheric and environmental conditions present in the observed scene degrade the quality of images or interrupt the capture of the Earth's surface information. One method to overcome this is by generating synthetic images through image simulation. Synthetic images can be generated by using statistical or knowledge-based models or by using spectral and optic-based models to create a simulated image in place of the unobtained image at a required time. Various proposed methodologies will provide economical utility in the generation of image learning materials and time series data through image simulation. The 6 published articles cover various topics and applications central to Remote sensing image simulation. Although submission to this Special Issue is now closed, the need for further in-depth research and development related to image simulation of High-spatial and spectral resolution, sensor fusion and colorization remains.I would like to take this opportunity to express my most profound appreciation to the MDPI Book staff, the editorial team of Applied Sciences journal, especially Ms. Nimo Lang, the assistant editor of this Special Issue, talented authors, and professional reviewers

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Calibration of DART Radiative Transfer Model with Satellite Images for Simulating Albedo and Thermal Irradiance Images and 3D Radiative Budget of Urban Environment

    Get PDF
    Remote sensing is increasingly used for managing urban environment. In this context, the H2020 project URBANFLUXES aims to improve our knowledge on urban anthropogenic heat fluxes, with the specific study of three cities: London, Basel and Heraklion. Usually, one expects to derive directly 2 major urban parameters from remote sensing: the albedo and thermal irradiance. However, the determination of these two parameters is seriously hampered by complexity of urban architecture. For example, urban reflectance and brightness temperature are far from isotropic and are spatially heterogeneous. Hence, radiative transfer models that consider the complexity of urban architecture when simulating remote sensing signals are essential tools. Even for these sophisticated models, there is a major constraint for an operational use of remote sensing: the complex 3D distribution of optical properties and temperatures in urban environments. Here, the work is conducted with the DART (Discrete Anisotropic Radiative Transfer) model. It is a comprehensive physically based 3D radiative transfer model that simulates optical signals at the entrance of imaging spectro-radiometers and LiDAR scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental (atmosphere, topography,…) and instrumental (sensor altitude, spatial resolution, UV to thermal infrared,…) configuration. Paul Sabatier University distributes free licenses for research activities. This paper presents the calibration of DART model with high spatial resolution satellite images (Landsat 8, Sentinel 2, etc.) that are acquired in the visible (VIS) / near infrared (NIR) domain and in the thermal infrared (TIR) domain. Here, the work is conducted with an atmospherically corrected Landsat 8 image and Bale city, with its urban database. The calibration approach in the VIS/IR domain encompasses 5 steps for computing the 2D distribution (image) of urban albedo at satellite spatial resolution. (1) DART simulation of satellite image at very high spatial resolution (e.g., 50cm) per satellite spectral band. Atmosphere conditions are specific to the satellite image acquisition. (2) Spatial resampling of DART image at the coarser spatial resolution of the available satellite image, per spectral band. (3) Iterative derivation of the urban surfaces (roofs, walls, streets, vegetation,…) optical properties as derived from pixel-wise comparison of DART and satellite images, independently per spectral band. (4) Computation of the band albedo image of the city, per spectral band. (5) Computation of the image of the city albedo and VIS/NIR exitance, as an integral over all satellite spectral bands. In order to get a time series of albedo and VIS/NIR exitance, even in the absence of satellite images, ECMWF information about local irradiance and atmosphere conditions are used. A similar approach is used for calculating the city thermal exitance using satellite images acquired in the thermal infrared domain. Finally, DART simulations that are conducted with the optical properties derived from remote sensing images give also the 3D radiative budget of the city at any date including the date of the satellite image acquisition

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    corecore