177 research outputs found

    Protein Structure

    Get PDF
    Since the dawn of recorded history, and probably even before, men and women have been grasping at the mechanisms by which they themselves exist. Only relatively recently, did this grasp yield anything of substance, and only within the last several decades did the proteins play a pivotal role in this existence. In this expose on the topic of protein structure some of the current issues in this scientific field are discussed. The aim is that a non-expert can gain some appreciation for the intricacies involved, and in the current state of affairs. The expert meanwhile, we hope, can gain a deeper understanding of the topic

    Biological Systems Workbook: Data modelling and simulations at molecular level

    Get PDF
    Nowadays, there are huge quantities of data surrounding the different fields of biology derived from experiments and theoretical simulations, where results are often stored in biological databases that are growing at a vertiginous rate every year. Therefore, there is an increasing research interest in the application of mathematical and physical models able to produce reliable predictions and explanations to understand and rationalize that information. All these investigations are helping to overcome biological questions pushing forward in the solution of problems faced by our society. In this Biological Systems Workbook, we aim to introduce the basic pieces allowing life to take place, from the 3D structural point of view. We will start learning how to look at the 3D structure of molecules from studying small organic molecules used as drugs. Meanwhile, we will learn some methods that help us to generate models of these structures. Then we will move to more complex natural organic molecules as lipid or carbohydrates, learning how to estimate and reproduce their dynamics. Later, we will revise the structure of more complex macromolecules as proteins or DNA. Along this process, we will refer to different computational tools and databases that will help us to search, analyze and model the different molecular systems studied in this course

    Statistical analysis and modeling for biomolecular structures

    Get PDF
    Most of the recent studies on biomolecules address their three dimensional structure since it is closely related to their functions in a biological system. Determination of structure of biomolecules can be done by using various methods, which rely on data from various experimental instruments or on computational approaches to previously obtained data or datasets. Single particle reconstruction using electron microscopic images of macromolecules has proven resource-wise to be useful and affordable for determining their molecular structure in increasing details. The main goal of this thesis is to contribute to the single particle reconstruction methodology, by adding a process of denoising in the analysis of the cryo-electron microscopic images. First, the denoising methods are briefly surveyed and their efficiencies for filtering cryo-electron microscopic images are evaluated. In this thesis, the focus has been set to information theoretic minimum description length (MDL) principle for coding efficiently the essential part of the signal. This approach can also be applied to reduce noise in signals and here it is used to develop a novel denoising method for cryo-electron microscopic images. An existing denoising method has been modified to suit the given problem in single particle reconstruction. In addition, a more general denoising method has been developed, discovering a novel way to find model class by using the MDL principle. This method was then thoroughly tested and compared with co-existing methods in order to evaluate the utility of denoising in single particle reconstruction. A secondary goal in the research for this thesis deals with studying protein oligomerisation, using computational approaches. The focus has been to recognize interacting residues in proteins for oligomerization and to model the interaction site for hantavirus N-protein. In order to unravel the interaction structure, the approach has been to understand the phenomenon of protein folding towards quaternary structure.reviewe

    Front Matter - Soft Computing for Data Mining Applications

    Get PDF
    Efficient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the capability of computers to search huge amounts of data in a fast and effective manner. However, the data to be analyzed is imprecise and afflicted with uncertainty. In the case of heterogeneous data sources such as text, audio and video, the data might moreover be ambiguous and partly conflicting. Besides, patterns and relationships of interest are usually vague and approximate. Thus, in order to make the information mining process more robust or say, human-like methods for searching and learning it requires tolerance towards imprecision, uncertainty and exceptions. Thus, they have approximate reasoning capabilities and are capable of handling partial truth. Properties of the aforementioned kind are typical soft computing. Soft computing techniques like Genetic

    Development of a suite of bioinformatics tools for the analysis and prection of membrane protein structure.

    Get PDF
    This thesis describes the development of a novel approach for prediction of the three-dimensional structure of transmembrane regions of membrane proteins directly from amino acid sequence and basic transmembrane region topology.The development rationale employed involved a knowledge-based approach. Based on determined membrane protein structures, 20x20 association matrices were generated to summarise the distance associations between amino acid side chains on different alpha helical transmembrane regions of membrane proteins. Using these association matrices, combined with a knowledge-based scale for propensity for residue orientation in transmembrane segments (kPROT) (Pilpel et al., 1999), the software predicts the optimal orientations and associations of transmembrane regions and generates a 3D structural model of a given membrane protein, based on the amino acid sequence composition of its transmembrane regions. During the development, several structural and biostatistical analyses of determined membrane protein structures were undertaken with the aim of ensuring a consistent and reliable association matrix upon which to base the predictions. Evaluation of the model structures obtained for the protein sequences of a dataset of 17 membrane proteins of determined structure based on cross-validated leave-one-out testing revealed general1y high accuracy of prediction, with over 80% of associations between transmembrane regions being correctly predicted. These results provide a promising basis for future development and refinement of the algorithm, and to this end, work is underway using evolutionary computing approaches. As it stands, the approach gives scope for significant immediate benefit to researchers as a valuable starting point in the prediction of structure for membrane proteins of hitherto unknown structure.Tese (Doutorado em Filosofia) - University of Bedfordshire

    Development of a suite of bioinformatics tools for the analysis and prediction of membrane protein structure

    Get PDF
    This thesis describes the development of a novel approach for prediction of the three-dimensional structure of transmembrane regions of membrane proteins directly from amino acid sequence and basic transmembrane region topology. The development rationale employed involved a knowledge-based approach. Based on determined membrane protein structures, 20x20 association matrices were generated to summarise the distance associations between amino acid side chains on different alpha helical transmembrane regions of membrane proteins. Using these association matrices, combined with a knowledge-based scale for propensity for residue orientation in transmembrane segments (kPROT) (Pilpel et al., 1999), the software predicts the optimal orientations and associations of transmembrane regions and generates a 3D structural model of a gi ven membrane protein, based on the amino acid sequence composition of its transmembrane regions. During the development, several structural and biostatistical analyses of determined membrane protein structures were undertaken with the aim of ensuring a consistent and reliable association matrix upon which to base the predictions. Evaluation of the model structures obtained for the protein sequences of a dataset of 17 membrane proteins of detennined structure based on cross-validated leave-one-out testing revealed generally high accuracy of prediction, with over 80% of associations between transmembrane regions being correctly predicted. These results provide a promising basis for future development and refinement of the algorithm, and to this end, work is underway using evolutionary computing approaches. As it stands, the approach gives scope for significant immediate benefit to researchers as a valuable starting point in the prediction of structure for membrane proteins of hitherto unknown structure

    Book of abstracts of the 10th International Chemical and Biological Engineering Conference: CHEMPOR 2008

    Get PDF
    This book contains the extended abstracts presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, over 3 days, from the 4th to the 6th of September, 2008. Previous editions took place in Lisboa (1975, 1889, 1998), Braga (1978), Póvoa de Varzim (1981), Coimbra (1985, 2005), Porto (1993), and Aveiro (2001). The conference was jointly organized by the University of Minho, “Ordem dos Engenheiros”, and the IBB - Institute for Biotechnology and Bioengineering with the usual support of the “Sociedade Portuguesa de Química” and, by the first time, of the “Sociedade Portuguesa de Biotecnologia”. Thirty years elapsed since CHEMPOR was held at the University of Minho, organized by T.R. Bott, D. Allen, A. Bridgwater, J.J.B. Romero, L.J.S. Soares and J.D.R.S. Pinheiro. We are fortunate to have Profs. Bott, Soares and Pinheiro in the Honor Committee of this 10th edition, under the high Patronage of his Excellency the President of the Portuguese Republic, Prof. Aníbal Cavaco Silva. The opening ceremony will confer Prof. Bott with a “Long Term Achievement” award acknowledging the important contribution Prof. Bott brought along more than 30 years to the development of the Chemical Engineering science, to the launch of CHEMPOR series and specially to the University of Minho. Prof. Bott’s inaugural lecture will address the importance of effective energy management in processing operations, particularly in the effectiveness of heat recovery and the associated reduction in greenhouse gas emission from combustion processes. The CHEMPOR series traditionally brings together both young and established researchers and end users to discuss recent developments in different areas of Chemical Engineering. The scope of this edition is broadening out by including the Biological Engineering research. One of the major core areas of the conference program is life quality, due to the importance that Chemical and Biological Engineering plays in this area. “Integration of Life Sciences & Engineering” and “Sustainable Process-Product Development through Green Chemistry” are two of the leading themes with papers addressing such important issues. This is complemented with additional leading themes including “Advancing the Chemical and Biological Engineering Fundamentals”, “Multi-Scale and/or Multi-Disciplinary Approach to Process-Product Innovation”, “Systematic Methods and Tools for Managing the Complexity”, and “Educating Chemical and Biological Engineers for Coming Challenges” which define the extended abstracts arrangements along this book. A total of 516 extended abstracts are included in the book, consisting of 7 invited lecturers, 15 keynote, 105 short oral presentations given in 5 parallel sessions, along with 6 slots for viewing 389 poster presentations. Full papers are jointly included in the companion Proceedings in CD-ROM. All papers have been reviewed and we are grateful to the members of scientific and organizing committees for their evaluations. It was an intensive task since 610 submitted abstracts from 45 countries were received. It has been an honor for us to contribute to setting up CHEMPOR 2008 during almost two years. We wish to thank the authors who have contributed to yield a high scientific standard to the program. We are thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to all those who, through their dedicated efforts, have assisted us in this task. On behalf of the Scientific and Organizing Committees we wish you that together with an interesting reading, the scientific program and the social moments organized will be memorable for all.Fundação para a Ciência e a Tecnologia (FCT

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals
    • …
    corecore