105 research outputs found

    Evaluation of Statistical Features for Medical Image Retrieval

    Get PDF
    In this paper we present a complete system allowing the classification of medical images in order to detect possible diseases present in them. The proposed method is developed in two distinct stages: calculation of descriptors and their classification. In the first stage we compute a vector of thirty-three statistical features: seven are related to statistics of the first level order, fifteen to that of second level where thirteen are calculated by means of co-occurrence matrices and two with absolute gradient; the last thirteen finally are calculated using run-length matrices. In the second phase, using the descriptors already calculated, there is the actual image classification. Naive Bayes, RBF, Support VectorMa- chine, K-Nearest Neighbor, Random Forest and Random Tree classifiers are used. The results obtained from the proposed system show that the analysis carried out both on textured and on medical images lead to have a high accuracy

    Comparative assessment of texture features for the identification of cancer in ultrasound images: a review

    Get PDF
    In this paper, we review the use of texture features for cancer detection in Ultrasound (US) images of breast, prostate, thyroid, ovaries and liver for Computer-Aided Diagnosis (CAD) systems. This paper shows that texture features are a valuable tool to extract diagnostically relevant information from US images. This information helps practitioners to discriminate normal from abnormal tissues. A drawback of some classes of texture features comes from their sensitivity to both changes in image resolution and grayscale levels. These limitations pose a considerable challenge to CAD systems, because the information content of a specific texture feature depends on the US imaging system and its setup. Our review shows that single classes of texture features are insufficient, if considered alone, to create robust CAD systems, which can help to solve practical problems, such as cancer screening. Therefore, we recommend that the CAD system design involves testing a wide range of texture features along with features obtained with other image processing methods. Having such a competitive testing phase helps the designer to select the best feature combination for a particular problem. This approach will lead to practical US based cancer detection systems which de- liver real benefits to patients by improving the diagnosis accuracy while reducing health care cost

    PCA-SVM based CAD System for Focal Liver Lesions using B-Mode Ultrasound Images

    Get PDF
    The contribution made by texture of regions inside and outside of the lesions in classification of focal liver lesions (FLLs) is investigated in the present work. In order to design an efficient computer-aided diagnostic (CAD) system for FLLs, a representative database consisting of images with (1) typical and atypical cases of cyst, hemangioma (HEM) and metastatic carcinoma (MET) lesions, (2) small as well as large hepatocellular carcinoma (HCC) lesions and (3) normal (NOR) liver tissue is used. Texture features are computed from regions inside and outside of the lesions. Feature set consisting of 208 texture features, (i.e. 104 texture features and 104 texture ratio features) is subjected to principal component analysis (PCA) for finding the optimal number of principal components to train a support vector machine (SVM) classifier for the classification task. The proposed PCA-SVM based CAD system yielded classification accuracy of 87.2% with the individual class accuracy of 85%, 96%, 90%, 87.5% and 82.2% for NOR, Cyst, HEM, HCC and MET cases respectively. The accuracy for typical, atypical, small HCC and large HCC cases is 87.5%, 86.8%, 88.8%, and 87% respectively. The promising results indicate usefulness of the CAD system for assisting radiologists in diagnosis of FLLs.Defence Science Journal, 2013, 63(5), pp.478-486, DOI:http://dx.doi.org/10.14429/dsj.63.395

    Automatic ROI detection and classification of the Achilles tendon ultrasound images

    Get PDF
    Ultrasound (US) imaging plays an important role in medical imaging technologies. It is widely used because of its ease of use and low cost compared to other imaging techniques. Specifically, ultrasound imaging is used in the detection of the Achilles Tendon (AT) pathologies as it detects important details. For example, US imaging is used for AT rupture that affects about 1 in 5,000 people worldwide. Decision support systems are important in medical imaging, as they assist radiologist in detecting probable diagnoses and lesions. The work presented in this paper concerns the development of a software application to detect changes in the AT ultrasound images and subsequently classify them into normal or abnormal. We propose an approach that fully automates the detection for the Region of Interest (ROI) in ultrasound AT images. The original image is divided into six blocks with 1 cm size in each direction. The blocks lie inside the vulnerable area considered as our ROI. The proposed system achieved an accuracy of 97.21%

    Computer-Assisted Algorithms for Ultrasound Imaging Systems

    Get PDF
    Ultrasound imaging works on the principle of transmitting ultrasound waves into the body and reconstructs the images of internal organs based on the strength of the echoes. Ultrasound imaging is considered to be safer, economical and can image the organs in real-time, which makes it widely used diagnostic imaging modality in health-care. Ultrasound imaging covers the broad spectrum of medical diagnostics; these include diagnosis of kidney, liver, pancreas, fetal monitoring, etc. Currently, the diagnosis through ultrasound scanning is clinic-centered, and the patients who are in need of ultrasound scanning has to visit the hospitals for getting the diagnosis. The services of an ultrasound system are constrained to hospitals and did not translate to its potential in remote health-care and point-of-care diagnostics due to its high form factor, shortage of sonographers, low signal to noise ratio, high diagnostic subjectivity, etc. In this thesis, we address these issues with an objective of making ultrasound imaging more reliable to use in point-of-care and remote health-care applications. To achieve the goal, we propose (i) computer-assisted algorithms to improve diagnostic accuracy and assist semi-skilled persons in scanning, (ii) speckle suppression algorithms to improve the diagnostic quality of ultrasound image, (iii) a reliable telesonography framework to address the shortage of sonographers, and (iv) a programmable portable ultrasound scanner to operate in point-of-care and remote health-care applications
    corecore