50,851 research outputs found

    A new data assimilation procedure to develop a debris flow run-out model

    Get PDF
    Abstract Parameter calibration is one of the most problematic phases of numerical modeling since the choice of parameters affects the model\u2019s reliability as far as the physical problems being studied are concerned. In some cases, laboratory tests or physical models evaluating model parameters cannot be completed and other strategies must be adopted; numerical models reproducing debris flow propagation are one of these. Since scale problems affect the reproduction of real debris flows in the laboratory or specific tests used to determine rheological parameters, calibration is usually carried out by comparing in a subjective way only a few parameters, such as the heights of soil deposits calculated for some sections of the debris flows or the distance traveled by the debris flows using the values detected in situ after an event has occurred. Since no automatic or objective procedure has as yet been produced, this paper presents a numerical procedure based on the application of a statistical algorithm, which makes it possible to define, without ambiguities, the best parameter set. The procedure has been applied to a study case for which digital elevation models of both before and after an important event exist, implicating that a good database for applying the method was available. Its application has uncovered insights to better understand debris flows and related phenomena

    Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods

    Get PDF
    Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised) with respect to model inputs. In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations) but didactic application case. It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run) and the singular value decomposition (SVD) of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation. For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers) is adopted. Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting

    Numerical modelling of heat transfer and experimental validation in Powder-Bed Fusion with the Virtual Domain Approximation

    Get PDF
    Among metal additive manufacturing technologies, powder-bed fusion features very thin layers and rapid solidification rates, leading to long build jobs and a highly localized process. Many efforts are being devoted to accelerate simulation times for practical industrial applications. The new approach suggested here, the virtual domain approximation, is a physics-based rationale for spatial reduction of the domain in the thermal finite-element analysis at the part scale. Computational experiments address, among others, validation against a large physical experiment of 17.5 [cm3]\mathrm{[cm^3]} of deposited volume in 647 layers. For fast and automatic parameter estimation at such level of complexity, a high-performance computing framework is employed. It couples FEMPAR-AM, a specialized parallel finite-element software, with Dakota, for the parametric exploration. Compared to previous state-of-the-art, this formulation provides higher accuracy at the same computational cost. This sets the path to a fully virtualized model, considering an upwards-moving domain covering the last printed layers

    Integrated process of images and acceleration measurements for damage detection

    Get PDF
    The use of mobile robots and UAV to catch unthinkable images together with on-site global automated acceleration measurements easy achievable by wireless sensors, able of remote data transfer, have strongly enhanced the capability of defect and damage evaluation in bridges. A sequential procedure is, here, proposed for damage monitoring and bridge condition assessment based on both: digital image processing for survey and defect evaluation and structural identification based on acceleration measurements. A steel bridge has been simultaneously inspected by UAV to acquire images using visible light, or infrared radiation, and monitored through a wireless sensor network (WSN) measuring structural vibrations. First, image processing has been used to construct a geometrical model and to quantify corrosion extension. Then, the consistent structural model has been updated based on the modal quantities identified using the acceleration measurements acquired by the deployed WSN. © 2017 The Authors. Published by Elsevier Ltd

    Automatic camera selection for activity monitoring in a multi-camera system for tennis

    Get PDF
    In professional tennis training matches, the coach needs to be able to view play from the most appropriate angle in order to monitor players' activities. In this paper, we describe and evaluate a system for automatic camera selection from a network of synchronised cameras within a tennis sporting arena. This work combines synchronised video streams from multiple cameras into a single summary video suitable for critical review by both tennis players and coaches. Using an overhead camera view, our system automatically determines the 2D tennis-court calibration resulting in a mapping that relates a player's position in the overhead camera to their position and size in another camera view in the network. This allows the system to determine the appearance of a player in each of the other cameras and thereby choose the best view for each player via a novel technique. The video summaries are evaluated in end-user studies and shown to provide an efficient means of multi-stream visualisation for tennis player activity monitoring

    Contact-Aided Invariant Extended Kalman Filtering for Legged Robot State Estimation

    Full text link
    This paper derives a contact-aided inertial navigation observer for a 3D bipedal robot using the theory of invariant observer design. Aided inertial navigation is fundamentally a nonlinear observer design problem; thus, current solutions are based on approximations of the system dynamics, such as an Extended Kalman Filter (EKF), which uses a system's Jacobian linearization along the current best estimate of its trajectory. On the basis of the theory of invariant observer design by Barrau and Bonnabel, and in particular, the Invariant EKF (InEKF), we show that the error dynamics of the point contact-inertial system follows a log-linear autonomous differential equation; hence, the observable state variables can be rendered convergent with a domain of attraction that is independent of the system's trajectory. Due to the log-linear form of the error dynamics, it is not necessary to perform a nonlinear observability analysis to show that when using an Inertial Measurement Unit (IMU) and contact sensors, the absolute position of the robot and a rotation about the gravity vector (yaw) are unobservable. We further augment the state of the developed InEKF with IMU biases, as the online estimation of these parameters has a crucial impact on system performance. We evaluate the convergence of the proposed system with the commonly used quaternion-based EKF observer using a Monte-Carlo simulation. In addition, our experimental evaluation using a Cassie-series bipedal robot shows that the contact-aided InEKF provides better performance in comparison with the quaternion-based EKF as a result of exploiting symmetries present in the system dynamics.Comment: Published in the proceedings of Robotics: Science and Systems 201
    corecore