2,145 research outputs found

    In-Suit Doppler Technology Assessment

    Get PDF
    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations

    Contrast echocardiography for cardiac quantifications

    Get PDF
    The indicator-dilution-theory for cardiac quantifications has always been limited in practice by the invasiveness of the available techniques. However, the recent introduction of stable ultrasound contrast agents opens new possibilities for indicator dilution measurements. This study describes a new and successful approach to overcome this invasiveness issue. We show a novel approach for minimally invasive quantification of several cardiac parameters based on the dilution of ultrasound contrast agents. A single peripheral injection of an ultrasound contrast agent bolus can result in the simultaneous assessment of cardiac output, pulmonary blood volume, and left and right ventricular ejection fraction. The bolus passage in different sites of the central circulation is detected by an ultrasound transducer. The detected acoustic (or video) intensities are processed and several indicator dilution curves are measured simultaneously. To this end, we exploit that for low concentrations the relation between contrast concentration and acoustic backscatter is approximately linear. The Local Density Random Walk Model is used to fit and interpret the indicator dilution curves for cardiac output, pulmonary blood volume, and ejection fraction measurements. Two fitting algorithms based either on a multiple linear regression in the logarithmic domain or on the solution of the moment equations are developed. The indicator dilution system can be also interpreted as a linear system and, therefore, characterized by an impulse response function. An adaptive Wiener deconvolution filter is implemented for robust dilution system identification. For ejection fraction measurements, the atrial and ventricular indicator dilution curves are measured and processed by the deconvolution filter, resulting in the estimate of the left ventricle dilution-system impulse response. This curve can be fitted and interpreted by a mono-compartment exponential model for the ejection fraction assessment. The proposed deconvolution filter is also used for the identification of the dilution system between right ventricle and left atrium. The Local Density Random Walk Model fit of the estimated impulse response allows the pulmonary blood volume assessment. Both cardiac output and pulmonary blood volume measurements are validated in vitro with accurate results (correlation coefficients larger than 0.99). The Pulmonary blood volume measurement feasibility is also tested in humans with promising results. The ejection fraction measurement is validated in-vivo. The impulse response approach allows accurate left ventricle ejection fraction estimates. Comparison with echocardiographic bi-plane measurements shows a correlation coefficient equal to 0.93. A dedicated image segmentation algorithm for videodensitometry has also been developed for automating the determination of regions of interest. The resulting algorithm has been integrated with the indicator dilution analysis system. The automatic determination of the measurement region results in improved dilution-curve signal-to-noise ratios. In conclusion, this study proves that quantification of cardiac output, pulmonary blood volume, and left and right ventricular ejection fraction by dilution of ultrasound contrast agents is feasible and accurate. Moreover, the proposed methods are applicable in different contexts (e.g., magnetic resonance imaging) and for different types of measurements, leading to a broad range of applications

    Cardiac Image Segmentation for Contrast Agent Videodensitometry

    Full text link

    Videodensitometric methods for cardiac output measurements

    Get PDF
    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively

    Computer assisted analysis of contrast enhanced ultrasound images for quantification in vascular diseases

    Get PDF
    Contrast enhanced ultrasound (CEUS) with microbubble contrast agents has shown great potential in imaging microvasculature, quantifying perfusion and hence detecting vascular diseases. However, most existing perfusion quantification methods based on image intensity, and are susceptible to confounding factors such as attenuation artefacts. Improving reproducibility is also a key challenge to clinical translation. Therefore, this thesis aims at developing attenuation correction and quantification techniques in CEUS with applications for detection and quantification of microvascular flow / perfusion. Firstly, a technique for automatic correction of attenuation effects in vascular imaging was developed and validated on a tissue mimicking phantom. The application of this technique to studying contrast enhancement of carotid adventitial vasa vasorum as a biomarker of radiation-induced atherosclerosis was demonstrated. The results showed great potential in reducing attenuation artefact and improve quantification in CEUS of carotid arteries. Furthermore, contrast intensity was shown to significantly increase in irradiated carotid arteries and could be a useful imaging biomarker for radiation-induced atherosclerosis. Secondly, a robust and automated tool for quantification of microbubble identification in CEUS image sequences using a temporal and spatial analysis was developed and validated on a flow phantom. The application of this technique to evaluate human musculoskeletal microcirculation with contrast enhanced ultrasound was demonstrated. The results showed an excellent accuracy and repeatability in quantifying active vascular density. It has great potential for clinical translation in the assessment of lower limb perfusion. Finally, a new bubble activity identification and quantification technique based on differential intensity projection in CEUS was developed and demonstrated with an in-vivo study, and applied to the quantification of intraplaque neovascularisation in an irradiated carotid artery of patients who were previously treated for head and neck cancer. The results showed a significantly more specific identification of bubble signals and had good agreement between the differential intensity-based technique and clinical visual assessment. This technique has potential to assist clinicians to diagnose and monitor intraplque neovascularisation.Open Acces

    Identification of ultrasound-contrast-agent dilution systems for ejection fraction measurements

    Get PDF
    Left ventricular ejection fraction is an important cardiac-efficiency measure. Standard estimations are based on geometric analysis and modeling; they require time and experienced cardiologists. Alternative methods make use of indicator dilutions, but they are invasive due to the need for catheterization. This study presents a new minimally invasive indicator dilution technique for ejection fraction quantification. It is based on a peripheral injection of an ultrasound contrast agent bolus. Left atrium and left ventricle acoustic intensities are recorded versus time by transthoracic echocardiography. The measured curves are corrected for attenuation distortion and processed by an adaptive Wiener deconvolution algorithm for the estimation of the left ventricle impulse response, which is interpolated by a monocompartment exponential model for the ejection fraction assessment. This technique measures forward ejection fraction, which excludes regurgitant volumes. The feasibility of the method was tested on a group of 20 patients with left ventricular ejection fractions going from 10% to 70%. The results are promising and show a 0.93 correlation coefficient with echographic bi-plane ejection fraction measurements. A more extensive validation as well as an investigation on the method applicability for valve insufficiency and right ventricular ejection fraction quantification will be an object of future study

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF
    • …
    corecore