2,854 research outputs found

    A robust braille recognition system

    Get PDF
    Braille is the most effective means of written communication between visually-impaired and sighted people. This paper describes a new system that recognizes Braille characters in scanned Braille document pages. Unlike most other approaches, an inexpensive flatbed scanner is used and the system requires minimal interaction with the user. A unique feature of this system is the use of context at different levels (from the pre-processing of the image through to the post-processing of the recognition results) to enhance robustness and, consequently, recognition results. Braille dots composing characters are identified on both single and double-sided documents of average quality with over 99% accuracy, while Braille characters are also correctly recognised in over 99% of documents of average quality (in both single and double-sided documents)

    A Tesseract-based Optical Character Recognition for a Text-to-Braille Code Conversion

    Get PDF
    This study provided a platform that converts printed text documents into corresponding braille code that will trigger the palpable output of the braille cells. The system is composed of two main parts: the image scanner and the microcontroller-based braille platform. The image scanner captures the printed text document and performs a series of pre-processing algorithms where the processed image will be subjected to character recognition using Tesseract. It is open-source software for character recognition capable of recognizing text characters in different fonts and sizes. SimpleCV, also an open-source software for computer vision and a simpler version of an OpenCV, was utilized in pre-processing of images where binarization, filtering, edge detection, and character segmentation are performed. This will allow the microcontroller-based braille platform to interpret the printed characters from the generated braille code in ASCII format that will trigger the palpable output of the braille cells. The developed system was subjected to functionality and accuracy testing to assess its performance. Accuracy was based on the capability of the system to produce the right braille outputs that match the scanned line of text which are in Arial font. The testing was conducted utilizing the Arial font size of 12, 14, 16, 18, 20, 22, and 24. Results show that the system is capable of recognizing text with greater than 85 % accuracy starting at font size 18 with an average accuracy of 88.09 % and increases accordingly as the font size increases

    Enabling Seamless Access to Digital Graphical Contents for Visually Impaired Individuals via Semantic-Aware Processing

    Get PDF
    Vision is one of the main sources through which people obtain information from the world, but unfortunately, visually-impaired people are partially or completely deprived of this type of information. With the help of computer technologies, people with visual impairment can independently access digital textual information by using text-to-speech and text-to-Braille software. However, in general, there still exists a major barrier for people who are blind to access the graphical information independently in real-time without the help of sighted people. In this paper, we propose a novel multi-level and multi-modal approach aiming at addressing this challenging and practical problem, with the key idea being semantic-aware visual-to-tactile conversion through semantic image categorization and segmentation, and semantic-driven image simplification. An end-to-end prototype system was built based on the approach. We present the details of the approach and the system, report sample experimental results with realistic data, and compare our approach with current typical practice

    Multimodal Accessibility of Documents

    Get PDF

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Sensory aids for the blind: A challenging problem with lessons for the future

    Get PDF
    The two major objectives of sensory aids for the blind are to permit access to printed matter and to permit safe travel through the environment. The difficulties of designing technological means to achieve these objectives are in many respects unrelated to the concerns of the engineering laboratory. Social, economic, political, and logistic considerations all play a role. The "blind population" in the United States includes both the totally blind and those with a wide range of visual impairment. This population totals about 400 000 people in which the aged, the multiply handicapped, and those with significant residual vision predominate. Singly handicapped, working-aged people are the initial targets of the current sensory aids. Expansion of their range of usefulness to larger fractions of the blind population is expected to come later. About 800 agencies serve the blind population in the United States, and in 1967 they were responsible for an annual expenditure of 1 million. Nevertheless, several potentially useful prototype devices have been developed and are about to be evaluated in this country; at least one is of foreign origin. But if these devices are ever to have the opportunity of reaching the blind public, then mechanisms for evaluation, field trials, manufacture, and deployment must be set up. The field of currently active sensory-aids research programs is reviewed. Several programs are concerned with increasing the convenience and accessibility of braille by the application of computer technology. Nevertheless, despite the unquestionable value of these developments, the usefulness of braille is limited by its bulk, its cost, and the transcription time. To provide direct access to printed documents several devices are being developed that transform optical images from a printed page into auditory or tactile displays requiring motivation and training for effective use. These machines are termed "direct-translation" units and are designed for simplicity and low cost. Other systems utilize print recognition techniques to create a reading machine providing braille or speech as an output. These machines offer potentially faster reading rates and their use promises to be easier to learn than direct-translation machines, but at the penalty of complexity and high cost. Several mobility aids designed to augment the cane or guide dog have recently been developed. These are also described. The prospects of achieving direct input to the visual cortex are discussed. It is apparent that the cost of this research is likely to be extremely high in relation to the size of the blind population which might ultimately benefit. Somewhat more easily realizable is a visual substitution system involving stimulation of an area of the skin. Several systems are being developed but all suffer from limitations in image resolution. Finally, an examination of the organization of research and funding reveals that the U.S. program is small, poorly coordinated, and contains some seemingly unnecessary duplication of effort. Several obvious lessons emerge which, if heeded, could greatly improve the effectiveness of sensory-aids research by providing development, manufacture, evaluation, and deployment services within an integrated program

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    A survey of comics research in computer science

    Full text link
    Graphical novels such as comics and mangas are well known all over the world. The digital transition started to change the way people are reading comics, more and more on smartphones and tablets and less and less on paper. In the recent years, a wide variety of research about comics has been proposed and might change the way comics are created, distributed and read in future years. Early work focuses on low level document image analysis: indeed comic books are complex, they contains text, drawings, balloon, panels, onomatopoeia, etc. Different fields of computer science covered research about user interaction and content generation such as multimedia, artificial intelligence, human-computer interaction, etc. with different sets of values. We propose in this paper to review the previous research about comics in computer science, to state what have been done and to give some insights about the main outlooks

    Personalising Vibrotactile Displays through Perceptual Sensitivity Adjustment

    Get PDF
    Haptic displays are commonly limited to transmitting a discrete set of tactile motives. In this paper, we explore the transmission of real-valued information through vibrotactile displays. We simulate spatial continuity with three perceptual models commonly used to create phantom sensations: the linear, logarithmic and power model. We show that these generic models lead to limited decoding precision, and propose a method for model personalization adjusting to idiosyncratic and spatial variations in perceptual sensitivity. We evaluate this approach using two haptic display layouts: circular, worn around the wrist and the upper arm, and straight, worn along the forearm. Results of a user study measuring continuous value decoding precision show that users were able to decode continuous values with relatively high accuracy (4.4% mean error), circular layouts performed particularly well, and personalisation through sensitivity adjustment increased decoding precision

    One-Pot 3D Printing of Robust Multimaterial Devices

    Full text link
    Polymer 3D printing is a broad set of manufacturing methods that permit the fabrication of complex architectures, and, as a result, numerous efforts focus on formulating processible chemistries that produce desirable material behavior in printed parts. However, current resin chemistries typically result in a single fixed set of properties once fully polymerized, a fact that poses significant engineering challenges to obtaining multimaterial devices. As an alternative to single-property materials, we introduce a ternary sequential reaction scheme that exhibits diverse multimaterial properties by profoundly altering the polymer microstructure from within a single resin composition. In this system, the photodosage during 3D printing sets both the shape and extent of conversion for each subsequent reaction. This different polymerization mechanisms of the subsequent stages yield disparate crosslink densities and viscoelastic properties. As a result, our materials possess Young's Moduli spanning over three orders of magnitude (400 kPa < E < 1.6 GPa) with smooth transitions between soft and stiff regions. We successfully pattern a 500x change in modulus in under a millimeter while the sequential assembly of our polymer networks ensures robust interfaces and enhances toughness by 10x compared to the single property materials. Most importantly, the final objects remain stable to UV and thermal aging, a key limitation to applications of previous multimaterial chemistries. We demonstrate the ability to 3D print intricate multimaterial architectures by fabricating a soft, wearable braille display.Comment: 54 pages including supplemental information, 5 main text figure
    • …
    corecore